scholarly journals Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena

2012 ◽  
Vol 540 ◽  
pp. 1-12 ◽  
Author(s):  
X. Sauvage ◽  
G. Wilde ◽  
S.V. Divinski ◽  
Z. Horita ◽  
R.Z. Valiev
2015 ◽  
Vol 5 ◽  
pp. 111-126
Author(s):  
Evgeny V. Naydenkin ◽  
Galina P. Grabovetskaya ◽  
I.P. Mishin

Experimental studies on the grain boundary diffusion and processes controlled by it in the ultrafine-grained metallic materials produced by various methods of severe plastic deformation are reviewed. Correlation between the increased diffusion permeability of grain boundaries and features of recrystallization and deformation development in these materials possessing the non-equilibrium state of grain boundaries formed during severe plastic deformation in the temperature range of T < 0.35Tm is demonstrated and analyzed.


2015 ◽  
Vol 5 ◽  
pp. 77-92 ◽  
Author(s):  
Xavier Sauvage ◽  
Yana Nasedkina

During the past two decades, processing of ultrafine grained materials using severe plastic deformation techniques has attracted great interest in the scientific community. Although the up-scaling of processes and the lack of ductility of ultrafine grained alloys are still some important challenges, these techniques look promising because they produce bulk materials free of porosities. More recently, some strategies to combine precipitation hardening and ultrafine grained structures have been proposed. It has also been shown that nanoscaled composite materials could be successfully processed. This experimental work rose however some very fundamental scientific questions about the influence of severe plastic deformation on the precipitation mechanisms or on the formation of supersaturated solid solution through mechanical mixing. The driving force and the thermodynamics of these phase transformations are of course affected by the high amount of energy stored in severely deformed alloys, especially as interfacial energy. But grain boundaries, with the help of dislocations and point defects, also play an important role in the kinetics. In this paper, it is proposed to shortly review these phenomena and the underlying mechanisms with a special emphasis on the contribution of grain boundaries.


2006 ◽  
Vol 114 ◽  
pp. 7-18 ◽  
Author(s):  
Ruslan Valiev

During the last decade severe plastic deformation (SPD) has become a widely known method of materials processing used for fabrication of ultrafine-grained materials with attractive properties. Nowadays SPD processing is rapidly developing and is on the verge of a transition from lab-scale research to commercial production. This paper focuses on several new trends in the development of SPD techniques for effective grain refinement, including those for commercial alloys and presents new SPD processing routes to produce bulk nanocrystalline materials.


Author(s):  
Mihaela Banu ◽  
Mitica Afteni ◽  
Alexandru Epureanu ◽  
Valentin Tabacaru

There are several severe plastic deformation processes that transform the material from microsized grains to the nanosized grains under large deformations. The grain size of a macrostructure is generally 300 μm. Following severe plastic deformation it can be reached a grain size of 200 nm and even less up to 50 nm. These structures are called ultrafine grained materials with nanostructured organization of the grains. There are severe plastic deformation processes like equal angular channel, high pressure torsion which lead to a 200 nm grain size, respectively 100 nm grain size. Basically, these processes have a common point namely to act on the original sized material so that an extreme deformation to be produced. The severe plastic deformation processes developed until now are empirically-based and the modeling of them requires more understanding of how the materials deform. The macrostructural material models do not fit the behavior of the nanostructured materials exhibiting simultaneously high strength and ductility. The existent material laws need developments which consider multi-scale analysis. In this context, the present paper presents a laboratory method to obtain ultrafine grains of an aluminum alloy (Al-Mg) that allows the microstructure observations and furthermore the identification of the stress–strain response under loadings. The work is divided into (i) processing of the ultrafine-grained aluminum alloy using a laboratory-scale process named in-plane controlled multidirectional shearing process, (ii) crystallographic analysis of the obtained material structure, (iii) tensile testing of the ultrafine-grained aluminum specimens for obtaining the true stress-strain behavior. Thus, the microscale phenomena are explained with respect to the external loads applied to the aluminum alloy. The proposed multi-scale analysis gives an accurate prediction of the mechanical behavior of the ultrafine-grained materials that can be further applied to finite element modeling of the microforming processes.


2008 ◽  
Vol 604-605 ◽  
pp. 97-111 ◽  
Author(s):  
Roberto B. Figueiredo ◽  
Megumi Kawasaki ◽  
Terence G. Langdon

Processing through the application of severe plastic deformation (SPD) provides an opportunity for achieving very significant grain refinement in bulk metals. Since the occurrence of superplastic flow generally requires a grain size smaller than ~10 µm, it is reasonable to anticipate that materials processed by SPD will exhibit superplastic ductilities when pulled in tension at elevated temperatures. This paper summarizes the fundamental principles of SPD processing and describes recent results demonstrating the occurrence of exceptional superplastic flow in these ultrafine-grained materials.


Sign in / Sign up

Export Citation Format

Share Document