scholarly journals On the sum of signless Laplacian spectra of graphs

2019 ◽  
Vol 11 (2) ◽  
pp. 407-417 ◽  
Author(s):  
S. Pirzada ◽  
H.A. Ganie ◽  
A.M. Alghamdi

For a simple graph $G(V,E)$ with $n$ vertices, $m$ edges, vertex set $V(G)=\{v_1, v_2, \dots, v_n\}$ and edge set $E(G)=\{e_1, e_2,\dots, e_m\}$, the adjacency matrix $A=(a_{ij})$ of $G$ is a $(0, 1)$-square matrix of order $n$ whose $(i,j)$-entry is equal to 1 if $v_i$ is adjacent to $v_j$ and equal to 0, otherwise. Let $D(G)={diag}(d_1, d_2, \dots, d_n)$ be the diagonal matrix associated to $G$, where $d_i=\deg(v_i),$ for all $i\in \{1,2,\dots,n\}$. The matrices $L(G)=D(G)-A(G)$ and $Q(G)=D(G)+A(G)$ are respectively called the Laplacian and the signless Laplacian matrices and their spectra (eigenvalues) are respectively called the Laplacian spectrum ($L$-spectrum) and the signless Laplacian spectrum ($Q$-spectrum) of the graph $G$. If $0=\mu_n\leq\mu_{n-1}\leq\cdots\leq\mu_1$ are the Laplacian eigenvalues of $G$, Brouwer conjectured that the sum of $k$ largest Laplacian eigenvalues $S_{k}(G)$ satisfies $S_{k}(G)=\sum\limits_{i=1}^{k}\mu_i\leq m+{k+1 \choose 2}$ and this conjecture is still open. If $q_1,q_2, \dots, q_n$ are the signless Laplacian eigenvalues of $G$, for $1\leq k\leq n$, let $S^{+}_{k}(G)=\sum_{i=1}^{k}q_i$ be the sum of $k$ largest signless Laplacian eigenvalues of $G$. Analogous to Brouwer's conjecture, Ashraf et al. conjectured that $S^{+}_{k}(G)\leq m+{k+1 \choose 2}$, for all $1\leq k\leq n$. This conjecture has been verified in affirmative for some classes of graphs. We obtain the upper bounds for $S^{+}_{k}(G)$ in terms of the clique number $\omega$, the vertex covering number $\tau$ and the diameter of the graph $G$. Finally, we show that the conjecture holds for large families of graphs.

2018 ◽  
Vol 10 (1) ◽  
pp. 185-196 ◽  
Author(s):  
R. Sharafdini ◽  
A.Z. Abdian

Let $G$ be a simple undirected graph. Then the signless Laplacian matrix of $G$ is defined as $D_G + A_G$ in which $D_G$ and $A_G$ denote the degree matrix and the adjacency matrix of $G$, respectively. The graph $G$ is said to be determined by its signless Laplacian spectrum (DQS, for short), if any graph having the same signless Laplacian spectrum as $G$ is isomorphic to $G$. We show that $G\sqcup rK_2$ is determined by its signless Laplacian spectra under certain conditions, where $r$ and $K_2$ denote a natural number and the complete graph on two vertices, respectively. Applying these results, some DQS graphs with independent edges are obtained.


2019 ◽  
Vol 38 (4) ◽  
pp. 213-218 ◽  
Author(s):  
Rajat Kanti Nath

Let $R$ be a nite non-commutative ring with center $Z(R)$. The commuting graph of $R$, denoted by $\Gamma_R$, is a simple undirected graph whose vertex set is $R\setminus Z(R)$ and two distinct vertices $x$ and $y$ are adjacent if and only if $xy = yx$. Let$\Spec(\Gamma_R),  \L-Spec(\GammaR)$ and $\Q-Spec(\GammaR)$ denote the spectrum, Laplacian spectrum and signless Laplacian spectrum of  $\Gamma_R$ respectively. A nite non-commutative ring $R$ is called super integral if $\Spec(\Gamma_R), \L-Spec(Gamma_R)$ and $\Q-Spec(\Gamma_R)$ contain only integers. In this paper, we obtain several classes of super integral rings.


2019 ◽  
Vol 11 (05) ◽  
pp. 1950053
Author(s):  
Deena C. Scaria ◽  
G. Indulal

Let [Formula: see text] be a connected graph with a distance matrix [Formula: see text]. Let [Formula: see text] and [Formula: see text] be, respectively, the distance Laplacian matrix and the distance signless Laplacian matrix of graph [Formula: see text], where [Formula: see text] denotes the diagonal matrix of the vertex transmissions in [Formula: see text]. The eigenvalues of [Formula: see text] and [Formula: see text] constitute the distance Laplacian spectrum and distance signless Laplacian spectrum, respectively. The subdivision graph [Formula: see text] of a graph [Formula: see text] is obtained by inserting a new vertex into every edge of [Formula: see text]. We denote the set of such new vertices by [Formula: see text]. The subdivision-vertex join of two vertex disjoint graphs [Formula: see text] and [Formula: see text] denoted by [Formula: see text], is the graph obtained from [Formula: see text] and [Formula: see text] by joining each vertex of [Formula: see text] with every vertex of [Formula: see text]. The subdivision-edge join of two vertex disjoint graphs [Formula: see text] and [Formula: see text] denoted by [Formula: see text], is the graph obtained from [Formula: see text] and [Formula: see text] by joining each vertex of [Formula: see text] with every vertex of [Formula: see text]. In this paper, we determine the distance Laplacian and distance signless Laplacian spectra of subdivision-vertex join and subdivision-edge join of a connected regular graph with an arbitrary regular graph in terms of their eigenvalues. As an application we exhibit some infinite families of cospectral graphs and find the respective spectra of the Jahangir graph [Formula: see text].


2017 ◽  
Vol 32 ◽  
pp. 365-379 ◽  
Author(s):  
Zhenzhen Lou ◽  
Qiongxiang Huang ◽  
Xueyi Huang

A connected graph is called Q-controllable if its signless Laplacian eigenvalues are mutually distinct and main. Two graphs G and H are said to be Q-cospectral if they share the same signless Laplacian spectrum. In this paper, infinite families of Q-controllable graphs are constructed, by using the operator of rooted product introduced by Godsil and McKay. In the process, innitely many non-isomorphic Q-cospectral graphs are also constructed, especially, including those graphs whose signless Laplacian eigenvalues are mutually distinct.


2018 ◽  
Vol 10 (06) ◽  
pp. 1850074 ◽  
Author(s):  
Somnath Paul

Let [Formula: see text] and [Formula: see text] be three graphs on disjoint sets of vertices and [Formula: see text] has [Formula: see text] edges. Let [Formula: see text] be the graph obtained from [Formula: see text] and [Formula: see text] in the following way: (1) Delete all the edges of [Formula: see text] and consider [Formula: see text] disjoint copies of [Formula: see text]. (2) Join each vertex of the [Formula: see text]th copy of [Formula: see text] to the end vertices of the [Formula: see text]th edge of [Formula: see text]. Let [Formula: see text] be the graph obtained from [Formula: see text] by joining each vertex of [Formula: see text] with each vertex of [Formula: see text] In this paper, we determine the adjacency (respectively, Laplacian, signless Laplacian) spectrum of [Formula: see text] in terms of those of [Formula: see text] and [Formula: see text] As an application, we construct infinite pairs of cospectral graphs.


2010 ◽  
Vol 4 (1) ◽  
pp. 167-174 ◽  
Author(s):  
Slobodan Simic ◽  
Zoran Stanic

A graph is called Q-integral if its signless Laplacian spectrum consists entirely of integers. We establish some general results regarding signless Laplacians of semiregular bipartite graphs. Especially, we consider those semiregular bipartite graphs with integral signless Laplacian spectrum. In some particular cases we determine the possible Q-spectra and consider the corresponding graphs.


2014 ◽  
Vol 06 (04) ◽  
pp. 1450050
Author(s):  
Lizhen Xu ◽  
Changxiang He

Let G be an r-regular graph with order n, and G ∨ H be the graph obtained by joining each vertex of G to each vertex of H. In this paper, we prove that G ∨ K2is determined by its signless Laplacian spectrum for r = 1, n - 2. For r = n - 3, we show that G ∨ K2is determined by its signless Laplacian spectrum if and only if the complement of G has no triangles.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
S. R. Jog ◽  
Raju Kotambari

Coalescence as one of the operations on a pair of graphs is significant due to its simple form of chromatic polynomial. The adjacency matrix, Laplacian matrix, and signless Laplacian matrix are common matrices usually considered for discussion under spectral graph theory. In this paper, we compute adjacency, Laplacian, and signless Laplacian energy (Qenergy) of coalescence of pair of complete graphs. Also, as an application, we obtain the adjacency energy of subdivision graph and line graph of coalescence from itsQenergy.


Sign in / Sign up

Export Citation Format

Share Document