The distance Laplacian and distance signless Laplacian spectrum of the subdivision-vertex join and subdivision-edge join of two regular graphs

2019 ◽  
Vol 11 (05) ◽  
pp. 1950053
Author(s):  
Deena C. Scaria ◽  
G. Indulal

Let [Formula: see text] be a connected graph with a distance matrix [Formula: see text]. Let [Formula: see text] and [Formula: see text] be, respectively, the distance Laplacian matrix and the distance signless Laplacian matrix of graph [Formula: see text], where [Formula: see text] denotes the diagonal matrix of the vertex transmissions in [Formula: see text]. The eigenvalues of [Formula: see text] and [Formula: see text] constitute the distance Laplacian spectrum and distance signless Laplacian spectrum, respectively. The subdivision graph [Formula: see text] of a graph [Formula: see text] is obtained by inserting a new vertex into every edge of [Formula: see text]. We denote the set of such new vertices by [Formula: see text]. The subdivision-vertex join of two vertex disjoint graphs [Formula: see text] and [Formula: see text] denoted by [Formula: see text], is the graph obtained from [Formula: see text] and [Formula: see text] by joining each vertex of [Formula: see text] with every vertex of [Formula: see text]. The subdivision-edge join of two vertex disjoint graphs [Formula: see text] and [Formula: see text] denoted by [Formula: see text], is the graph obtained from [Formula: see text] and [Formula: see text] by joining each vertex of [Formula: see text] with every vertex of [Formula: see text]. In this paper, we determine the distance Laplacian and distance signless Laplacian spectra of subdivision-vertex join and subdivision-edge join of a connected regular graph with an arbitrary regular graph in terms of their eigenvalues. As an application we exhibit some infinite families of cospectral graphs and find the respective spectra of the Jahangir graph [Formula: see text].

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
S. R. Jog ◽  
Raju Kotambari

Coalescence as one of the operations on a pair of graphs is significant due to its simple form of chromatic polynomial. The adjacency matrix, Laplacian matrix, and signless Laplacian matrix are common matrices usually considered for discussion under spectral graph theory. In this paper, we compute adjacency, Laplacian, and signless Laplacian energy (Qenergy) of coalescence of pair of complete graphs. Also, as an application, we obtain the adjacency energy of subdivision graph and line graph of coalescence from itsQenergy.


2018 ◽  
Vol 10 (1) ◽  
pp. 185-196 ◽  
Author(s):  
R. Sharafdini ◽  
A.Z. Abdian

Let $G$ be a simple undirected graph. Then the signless Laplacian matrix of $G$ is defined as $D_G + A_G$ in which $D_G$ and $A_G$ denote the degree matrix and the adjacency matrix of $G$, respectively. The graph $G$ is said to be determined by its signless Laplacian spectrum (DQS, for short), if any graph having the same signless Laplacian spectrum as $G$ is isomorphic to $G$. We show that $G\sqcup rK_2$ is determined by its signless Laplacian spectra under certain conditions, where $r$ and $K_2$ denote a natural number and the complete graph on two vertices, respectively. Applying these results, some DQS graphs with independent edges are obtained.


2018 ◽  
Vol 13 (02) ◽  
pp. 2050045
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Somnath Paul

The distance signless Laplacian matrix of a simple connected graph [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the distance matrix of [Formula: see text] and [Formula: see text] is the diagonal matrix whose main diagonal entries are the vertex transmissions in [Formula: see text]. In this paper, we first determine the distance signless Laplacian spectrum of the graphs obtained by generalization of the join and lexicographic product graph operations (namely joined union) in terms of their adjacency spectrum and the eigenvalues of an auxiliary matrix, determined by the graph [Formula: see text]. As an application, we show that new pairs of auxiliary equienergetic graphs can be constructed by joined union of regular graphs.


2021 ◽  
Vol 3 (1) ◽  
pp. 22-36
Author(s):  
I. Gopalapillai ◽  
D.C. Scaria

Let $G$ be a connected graph with a distance matrix $D$. The distance eigenvalues of $G$ are the eigenvalues of $D$, and the distance energy $E_D(G)$ is the sum of its absolute values. The transmission $Tr(v)$ of a vertex $v$ is the sum of the distances from $v$ to all other vertices in $G$. The transmission matrix $Tr(G)$ of $G$ is a diagonal matrix with diagonal entries equal to the transmissions of vertices. The matrices $D^L(G)= Tr(G)-D(G)$ and $D^Q(G)=Tr(G)+D(G)$ are, respectively, the Distance Laplacian and the Distance Signless Laplacian matrices of $G$. The eigenvalues of $D^L(G)$ ( $D^Q(G)$) constitute the Distance Laplacian spectrum ( Distance Signless Laplacian spectrum ). The subdivision graph $S(G)$ of $G$ is obtained by inserting a new vertex into every edge of $G$. We describe here the Distance Spectrum, Distance Laplacian spectrum and Distance Signless Laplacian spectrum of some types of subdivision related graphs of a regular graph in the terms of its adjacency spectrum. We also derive analytic expressions for the distance energy of $\bar{S}(C_p)$, partial complement of the subdivision of a cycle $C_p$ and that of $\overline {S\left( {C_p }\right)}$, complement of the even cycle $C_{2p}$.


2014 ◽  
Vol 06 (04) ◽  
pp. 1450050
Author(s):  
Lizhen Xu ◽  
Changxiang He

Let G be an r-regular graph with order n, and G ∨ H be the graph obtained by joining each vertex of G to each vertex of H. In this paper, we prove that G ∨ K2is determined by its signless Laplacian spectrum for r = 1, n - 2. For r = n - 3, we show that G ∨ K2is determined by its signless Laplacian spectrum if and only if the complement of G has no triangles.


10.37236/314 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Jianfeng Wang ◽  
Francesco Belardo ◽  
Qiongxiang Huang ◽  
Enzo M. Li Marzi

A dumbbell graph, denoted by $D_{a,b,c}$, is a bicyclic graph consisting of two vertex-disjoint cycles $C_a$, $C_b$ and a path $P_{c+3}$ ($c \geq -1$) joining them having only its end-vertices in common with the two cycles. In this paper, we study the spectral characterization w.r.t. the adjacency spectrum of $D_{a,b,0}$ (without cycles $C_4$) with $\gcd(a,b)\geq 3$, and we complete the research started in [J.F. Wang et al., A note on the spectral characterization of dumbbell graphs, Linear Algebra Appl. 431 (2009) 1707–1714]. In particular we show that $D_{a,b,0}$ with $3 \leq \gcd(a,b) < a$ or $\gcd(a,b)=a$ and $b\neq 3a$ is determined by the spectrum. For $b=3a$, we determine the unique graph cospectral with $D_{a,3a,0}$. Furthermore we give the spectral characterization w.r.t. the signless Laplacian spectrum of all dumbbell graphs.


2019 ◽  
Vol 11 (2) ◽  
pp. 407-417 ◽  
Author(s):  
S. Pirzada ◽  
H.A. Ganie ◽  
A.M. Alghamdi

For a simple graph $G(V,E)$ with $n$ vertices, $m$ edges, vertex set $V(G)=\{v_1, v_2, \dots, v_n\}$ and edge set $E(G)=\{e_1, e_2,\dots, e_m\}$, the adjacency matrix $A=(a_{ij})$ of $G$ is a $(0, 1)$-square matrix of order $n$ whose $(i,j)$-entry is equal to 1 if $v_i$ is adjacent to $v_j$ and equal to 0, otherwise. Let $D(G)={diag}(d_1, d_2, \dots, d_n)$ be the diagonal matrix associated to $G$, where $d_i=\deg(v_i),$ for all $i\in \{1,2,\dots,n\}$. The matrices $L(G)=D(G)-A(G)$ and $Q(G)=D(G)+A(G)$ are respectively called the Laplacian and the signless Laplacian matrices and their spectra (eigenvalues) are respectively called the Laplacian spectrum ($L$-spectrum) and the signless Laplacian spectrum ($Q$-spectrum) of the graph $G$. If $0=\mu_n\leq\mu_{n-1}\leq\cdots\leq\mu_1$ are the Laplacian eigenvalues of $G$, Brouwer conjectured that the sum of $k$ largest Laplacian eigenvalues $S_{k}(G)$ satisfies $S_{k}(G)=\sum\limits_{i=1}^{k}\mu_i\leq m+{k+1 \choose 2}$ and this conjecture is still open. If $q_1,q_2, \dots, q_n$ are the signless Laplacian eigenvalues of $G$, for $1\leq k\leq n$, let $S^{+}_{k}(G)=\sum_{i=1}^{k}q_i$ be the sum of $k$ largest signless Laplacian eigenvalues of $G$. Analogous to Brouwer's conjecture, Ashraf et al. conjectured that $S^{+}_{k}(G)\leq m+{k+1 \choose 2}$, for all $1\leq k\leq n$. This conjecture has been verified in affirmative for some classes of graphs. We obtain the upper bounds for $S^{+}_{k}(G)$ in terms of the clique number $\omega$, the vertex covering number $\tau$ and the diameter of the graph $G$. Finally, we show that the conjecture holds for large families of graphs.


2018 ◽  
Vol 34 ◽  
pp. 459-471 ◽  
Author(s):  
Shuting Liu ◽  
Jinlong Shu ◽  
Jie Xue

Let $G=(V(G),E(G))$ be a $k$-connected graph with $n$ vertices and $m$ edges. Let $D(G)$ be the distance matrix of $G$. Suppose $\lambda_1(D)\geq \cdots \geq \lambda_n(D)$ are the $D$-eigenvalues of $G$. The transmission of $v_i \in V(G)$, denoted by $Tr_G(v_i)$ is defined to be the sum of distances from $v_i$ to all other vertices of $G$, i.e., the row sum $D_{i}(G)$ of $D(G)$ indexed by vertex $v_i$ and suppose that $D_1(G)\geq \cdots \geq D_n(G)$. The $Wiener~ index$ of $G$ denoted by $W(G)$ is given by $W(G)=\frac{1}{2}\sum_{i=1}^{n}D_i(G)$. Let $Tr(G)$ be the $n\times n$ diagonal matrix with its $(i,i)$-entry equal to $TrG(v_i)$. The distance signless Laplacian matrix of $G$ is defined as $D^Q(G)=Tr(G)+D(G)$ and its spectral radius is denoted by $\rho_1(D^Q(G))$ or $\rho_1$. A connected graph $G$ is said to be $t$-transmission-regular if $Tr_G(v_i) =t$ for every vertex $v_i\in V(G)$, otherwise, non-transmission-regular. In this paper, we respectively estimate $D_1(G)-\lambda_1(G)$ and $2D_1(G)-\rho_1(G)$ for a $k$-connected non-transmission-regular graph in different ways and compare these obtained results. And we conjecture that $D_1(G)-\lambda_1(G)>\frac{1}{n+1}$. Moreover, we show that the conjecture is valid for trees.


2018 ◽  
Vol 11 (05) ◽  
pp. 1850066 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Ebrahim Hashemi

The distance signless Laplacian matrix [Formula: see text] of a connected graph [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the distance matrix of [Formula: see text] and [Formula: see text] is the diagonal matrix whose main entries are the vertex transmissions of [Formula: see text], and the spectral radius of a connected graph [Formula: see text] is the largest eigenvalue of [Formula: see text]. In this paper, first we obtain the [Formula: see text]-eigenvalues of the join of certain regular graphs. Next, we give some new bounds on the distance signless Laplacian spectral radius of a graph [Formula: see text] in terms of graph parameters and characterize the extremal graphs. Utilizing these results we present some upper and lower bounds on the distance signless Laplacian energy of a graph [Formula: see text].


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Chun-Li Kan ◽  
Ying-Ying Tan ◽  
Jia-Bao Liu ◽  
Bao-Hua Xing

In this paper, we give the relation between the spectrum of strongly regular graph and its clique-inserted graph. The Laplacian spectrum and the signless Laplacian spectrum of clique-inserted graph of strongly regular graph are calculated. We also give formulae expressing the energy, Kirchoff index, and the number of spanning trees of clique-inserted graph of a strongly regular graph. And, clique-inserted graph of the triangular graph T t , which is a strongly regular graph, is enumerated.


Sign in / Sign up

Export Citation Format

Share Document