spectra of graphs
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 14)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 289 ◽  
pp. 139-147
Author(s):  
Huiqiu Lin ◽  
Yuke Zhang

2021 ◽  
Vol 8 (1) ◽  
pp. 1-14
Author(s):  
Richard Low ◽  
◽  
Dan Roberts ◽  
Jinze Zheng ◽  
◽  
...  
Keyword(s):  

2020 ◽  
Vol 36 (36) ◽  
pp. 629-644
Author(s):  
Miquel Àngel Fiol ◽  
Josep Fàbrega ◽  
Victor Diego

The spectrum of a graph usually provides a lot of information about its combinatorial structure. Moreover, from the spectrum, the so-called predistance polynomials can be defined, as a generalization, for any graph, of the distance polynomials of a distance-regular graph. Going further, the preintersection numbers generalize the intersection numbers of a distance-regular graph. This paper describes, for any graph, the closed relationships between its spectrum, predistance polynomials, and preintersection numbers. Then, some applications to derive combinatorial properties of the given graph, most of them related to some fundamental characterizations of distance-regularity, are presented. In particular, the so-called `spectral excess theorem' is revisited. This result states that a connected regular graph is distance-regular if and only if its spectral excess, which is a value computed from the spectrum, equals the average excess, that is, the mean of the numbers of vertices at maximum distance from every vertex.


2019 ◽  
Vol 11 (2) ◽  
pp. 407-417 ◽  
Author(s):  
S. Pirzada ◽  
H.A. Ganie ◽  
A.M. Alghamdi

For a simple graph $G(V,E)$ with $n$ vertices, $m$ edges, vertex set $V(G)=\{v_1, v_2, \dots, v_n\}$ and edge set $E(G)=\{e_1, e_2,\dots, e_m\}$, the adjacency matrix $A=(a_{ij})$ of $G$ is a $(0, 1)$-square matrix of order $n$ whose $(i,j)$-entry is equal to 1 if $v_i$ is adjacent to $v_j$ and equal to 0, otherwise. Let $D(G)={diag}(d_1, d_2, \dots, d_n)$ be the diagonal matrix associated to $G$, where $d_i=\deg(v_i),$ for all $i\in \{1,2,\dots,n\}$. The matrices $L(G)=D(G)-A(G)$ and $Q(G)=D(G)+A(G)$ are respectively called the Laplacian and the signless Laplacian matrices and their spectra (eigenvalues) are respectively called the Laplacian spectrum ($L$-spectrum) and the signless Laplacian spectrum ($Q$-spectrum) of the graph $G$. If $0=\mu_n\leq\mu_{n-1}\leq\cdots\leq\mu_1$ are the Laplacian eigenvalues of $G$, Brouwer conjectured that the sum of $k$ largest Laplacian eigenvalues $S_{k}(G)$ satisfies $S_{k}(G)=\sum\limits_{i=1}^{k}\mu_i\leq m+{k+1 \choose 2}$ and this conjecture is still open. If $q_1,q_2, \dots, q_n$ are the signless Laplacian eigenvalues of $G$, for $1\leq k\leq n$, let $S^{+}_{k}(G)=\sum_{i=1}^{k}q_i$ be the sum of $k$ largest signless Laplacian eigenvalues of $G$. Analogous to Brouwer's conjecture, Ashraf et al. conjectured that $S^{+}_{k}(G)\leq m+{k+1 \choose 2}$, for all $1\leq k\leq n$. This conjecture has been verified in affirmative for some classes of graphs. We obtain the upper bounds for $S^{+}_{k}(G)$ in terms of the clique number $\omega$, the vertex covering number $\tau$ and the diameter of the graph $G$. Finally, we show that the conjecture holds for large families of graphs.


Sign in / Sign up

Export Citation Format

Share Document