scholarly journals Application of the functional calculus to solving of infinite dimensional heat equation

2016 ◽  
Vol 8 (2) ◽  
pp. 313-322
Author(s):  
S.V. Sharyn

In this paper we study infinite dimensional heat equation associated with the Gross Laplacian. Using the functional calculus method, we obtain the solution of appropriate Cauchy problem in the space of polynomial ultradifferentiable functions. The semigroup approach is considered as well.

Author(s):  
Charles L. Epstein ◽  
Rafe Mazzeo

This chapter describes the construction of a resolvent operator using the Laplace transform of a parametrix for the heat kernel and a perturbative argument. In the equation (μ‎-L) R(μ‎) f = f, R(μ‎) is a right inverse for (μ‎-L). In Hölder spaces, these are the natural elliptic estimates for generalized Kimura diffusions. The chapter first constructs the resolvent kernel using an induction over the maximal codimension of bP, and proves various estimates on it, along with corresponding estimates for the solution operator for the homogeneous Cauchy problem. It then considers holomorphic semi-groups and uses contour integration to construct the solution to the heat equation, concluding with a discussion of Kimura diffusions where all coefficients have the same leading homogeneity.


2020 ◽  
Vol 21 (01) ◽  
pp. 2150002
Author(s):  
Yuliya Mishura ◽  
Kostiantyn Ralchenko ◽  
Mounir Zili ◽  
Eya Zougar

We introduce a fractional stochastic heat equation with second-order elliptic operator in divergence form, having a piecewise constant diffusion coefficient, and driven by an infinite-dimensional fractional Brownian motion. We characterize the fundamental solution of its deterministic part, and prove the existence and the uniqueness of its solution.


2015 ◽  
Vol 29 (1) ◽  
pp. 51-59
Author(s):  
Łukasz Dawidowski

AbstractThe abstract Cauchy problem on scales of Banach space was considered by many authors. The goal of this paper is to show that the choice of the space on scale is significant. We prove a theorem that the selection of the spaces in which the Cauchy problem ut − Δu = u|u|s with initial–boundary conditions is considered has an influence on the selection of index s. For the Cauchy problem connected with the heat equation we will study how the change of the base space influents the regularity of the solutions.


2020 ◽  
Vol 13 (3) ◽  
pp. 257-278 ◽  
Author(s):  
Goro Akagi ◽  
Kazuhiro Ishige ◽  
Ryuichi Sato

AbstractLet H be a norm of {\mathbb{R}^{N}} and {H_{0}} the dual norm of H. Denote by {\Delta_{H}} the Finsler–Laplace operator defined by {\Delta_{H}u:=\operatorname{div}(H(\nabla u)\nabla_{\xi}H(\nabla u))}. In this paper we prove that the Finsler–Laplace operator {\Delta_{H}} acts as a linear operator to {H_{0}}-radially symmetric smooth functions. Furthermore, we obtain an optimal sufficient condition for the existence of the solution to the Cauchy problem for the Finsler heat equation\partial_{t}u=\Delta_{H}u,\quad x\in\mathbb{R}^{N},\,t>0,where {N\geq 1} and {\partial_{t}:=\frac{\partial}{\partial t}}.


Author(s):  
OLGA BELOSHAPKA

Smolyanov has introduced1 the term "Feynman formula" (in the configuration space) for the representation of a solution of a Cauchy problem by limit of integrals over finite Cartesian products of the domain of the solution when the number of multipliers tends to infinity. In this paper, such formulas (first written by Smolyanov, Shamarov and Kpekpassi in a short note2) are proved for a family of heat type equations where the spatial variable runs over 𝔭-adic space of countable sequences. Equations with 𝔭-adic variables describe, for example, the dynamics of proteins.


2020 ◽  
Vol 37 (4) ◽  
pp. 1548-1573
Author(s):  
Marieme Lasri ◽  
Hamid Bounit ◽  
Said Hadd

Abstract The purpose of this paper is to investigate the robustness of exact controllability of perturbed linear systems in Banach spaces. Under some conditions, we prove that the exact controllability is preserved if we perturb the generator of an infinite-dimensional control system by appropriate Miyadera–Voigt perturbations. Furthermore, we study the robustness of exact controllability for perturbed boundary control systems. As application, we study the robustness of exact controllability of neutral equations. We mention that our approach is mainly based on the concept of feedback theory of infinite-dimensional linear systems.


Sign in / Sign up

Export Citation Format

Share Document