scholarly journals De Novo Identification of Single Nucleotide Mutations in Caenorhabditis elegans Using Array Comparative Genomic Hybridization

Genetics ◽  
2009 ◽  
Vol 181 (4) ◽  
pp. 1673-1677 ◽  
Author(s):  
Jason S. Maydan ◽  
H. Mark Okada ◽  
Stephane Flibotte ◽  
Mark L. Edgley ◽  
Donald G. Moerman
2019 ◽  
Vol 32 (7-8) ◽  
pp. 529
Author(s):  
Ana Rita Soares ◽  
Gabriela Soares ◽  
Manuela Mota-Freitas ◽  
Natália Oliva-Teles ◽  
Ana Maria Fortuna

Introduction: Intellectual disability affects 2% – 3% of the general population, with a chromosomal abnormality being found in 4% – 28% of these patients and a cryptic subtelomeric abnormality in 3% – 16%. In most cases, these subtelomeric rearrangements are submicroscopic, requiring techniques other than conventional karyotype for detection. They may be de novo or inherited from an affected parent or from a healthy carrier of a balanced chromosomal abnormality. The aim of this study was to characterize patients from our medical genetics center, in whom both a deletion and duplication in subtelomeric regions were found.Material and Methods: Clinical and cytogenetic characterization of 21 probands followed at our center, from 1998 until 2017, with subtelomeric rearrangements.Results: There were 21 probands from 19 families presenting with intellectual disability and facial dysmorphisms. Seven had behavior changes, five had epilepsy and 14 presented with some other sign or symptom. Four had chromosomal abnormalities detected by conventional karyotype and four were diagnosed by array-comparative genomic hybridization. In four cases, parental studies were not possible. The online mendelian inheritance in man classification was provided whenever any of the phenotypes (deletion or duplication syndrome) was dominant.Discussion: Patients and relevant family members were clinically and cytogenetically characterized. Although rare, subtelomeric changes are a substantial cause of syndromic intellectual disability with important familial repercussions. It is essential to remember that a normal array-comparative genomic hybridization result does not exclude a balanced rearrangement in the parents.Conclusion: Parental genetic studies are essential not only for a complete characterization of the rearrangement, but also for accurate genetic counselling and screening of family members at risk for recurrence.


2018 ◽  
Vol 21 (2) ◽  
pp. 63-67
Author(s):  
S Zachaki ◽  
E Kouvidi ◽  
A Mitrakos ◽  
L Lazaros ◽  
A Pantou ◽  
...  

Abstract A novel de novo paracentric inversion of the long arm of chromosome 20 [inv(20)(q13.1q13.3)], detected by conventional karyotyping in a 14-year-old boy with mental retardation is described. Further investigation by array comparative genomic hybridization (aCGH) revealed that the 20q inversion was not accompanied by microdeletions/microduplications containing disease-associated genes near or at the breakpoints. Two deletions at chromosomal regions 11q14.3q21 and 20q12 of 4.5 and 1.97 Mb size, respectively, containing important online Mendelian inheritance in man (OMIM) genes, were detected. The 4.5Mb 11q14.3q21 microdeletion was contained within a region that is involved, in most of the reported cases, with the interstitial 11q deletion and may be related to the mental retardation and developmental delay present in the patient. On the other hand, the published data about the 20q12 microdeletion are very few and it is not possible to correlate this finding with our patient’s phenotype. This case report contributes to the description of a new chromosomal entity, not previously reported, and is therefore important, especially in prenatal diagnosis and management of patients. Array comparative genomic hybridization has proven a useful technique for detecting submicroscopic rearrangements and should be offered prenatally, especially in cases of de novo karyotypically balanced chromosomal inversions or translocations in order to unveil other unbalanced chromosomal abnormalities such as deletions and amplifications.


2019 ◽  
Author(s):  
Laurie A. Robak ◽  
Renqian Du ◽  
Bo Yuan ◽  
Shen Gu ◽  
Isabel Alfradique-Dunham ◽  
...  

AbstractBackgroundParkinson’s disease (PD) is a genetically heterogeneous condition; both single nucleotide variants (SNVs) and copy number variants (CNVs) are important genetic risk factors. We examined the utility of combining exome sequencing and genome-wide array-based comparative genomic hybridization (aCGH) for identification of PD genetic risk factors.MethodsWe performed exome sequencing on 110 subjects with PD and a positive family history; 99 subjects were also evaluated using genome-wide aCGH. We interrogated exome sequencing and array comparative genomic hybridization data for pathogenic SNVs and CNVs at Mendelian PD gene loci. SNVs were confirmed via Sanger sequencing. CNVs were confirmed with custom-designed high-density aCGH, droplet digital PCR, and breakpoint sequencing.ResultsUsing exome sequencing, we discovered individuals with known pathogenic single nucleotide variants in GBA (p.E365K, p.T408M, p.N409S, p.L483P) and LRRK2 (p.R1441G and p.G2019S). Two subjects were each double heterozygotes for variants in GBA and LRRK2. Based on aCGH, we additionally discovered cases with an SNCA duplication and heterozygous intragenic GBA deletion. Five additional subjects harbored both SNVs (p.N52fs, p.T240M, p.P437L, p.W453*) and likely disrupting CNVs at the PARK2 locus, consistent with compound heterozygosity. In nearly all cases, breakpoint sequencing revealed microhomology, a mutational signature consistent with CNV formation due to DNA replication errors.ConclusionsIntegrated exome sequencing and aCGH yielded a genetic diagnosis in 19.3% of our familial PD cohort. Our analyses highlight potential mechanisms for SNCA and PARK2 CNV formation, uncover multilocus pathogenic variation, and identify novel SNVs and CNVs for further investigation as potential PD risk alleles.


2010 ◽  
Vol 30 (1) ◽  
pp. 84-88 ◽  
Author(s):  
Kwang-Sook Woo ◽  
Ji-Eun Kim ◽  
Kyung-Eun Kim ◽  
Myo-Jing Kim ◽  
Jae-Ho Yoo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document