chromosome 16
Recently Published Documents


TOTAL DOCUMENTS

681
(FIVE YEARS 41)

H-INDEX

58
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Abdulfatai Tijjani ◽  
Bashir Salim ◽  
Marcos Vinicius Barbosa da Silva ◽  
Hamza A Eltahir ◽  
Taha H Musa ◽  
...  

Sudan, the largest country in Africa, acts as a corridor between North and sub-Saharan Africa along the river Niles. It comprises warm arid and semi-arid grazing lands, and it is home to the second-largest African population of indigenous livestock. Indigenous Sudanese cattle are mainly indicine/zebu (humped) type. They thrive in the harshest dryland environments characterised by high temperatures, long seasonal dry periods, nutritional shortages, and vector diseases challenges. We investigated genome diversity in six indigenous African zebu breeds sampled in Sudan (Aryashai, Baggara, Butana, Fulani, Gash, and Kenana). We adopted three genomic scan approaches to identify candidate selective sweeps regions (ZHp, FST, XP-EHH). We identified a set of gene-rich selective sweep regions shared across African and Asian zebu or unique to Sudanese zebu. In particular, African and Asian zebu candidate gene-rich regions are detected on chromosomes 2, 5 and 7. They include genes involved in immune response, body size and conformation, and stress response to heat. In addition, a 250 kb selective sweep on chromosome 16 was detected exclusively in five Sudanese zebu populations. This region spans seven genes, including PLCH2, PEX10, PRKCZ and SKI, which are involved in alternative adaptive metabolic strategies of insulin signalling, glucose homeostasis, and fat metabolism. Together, these genes may contribute to the zebu cattle resilience to heat, nutritional and water shortages. Our results highlight the putative importance of selection at gene-rich genome regions, which might be under a common regulatory genetic control, as an evolutionary mechanism for rapid adaptation to the complexity of environmental challenges.


2021 ◽  
pp. 1-9
Author(s):  
Emine Ikbal Atli ◽  
Sinem Yalcintepe ◽  
Engin Atli ◽  
Selma Demir ◽  
Cisem Mail ◽  
...  

Chromosome 16 is one of the gene-rich chromosomes; however, approximately 10% of the chromosome 16 sequence is composed of segmental copies, which renders this chromosome instable and predisposes it to rearrangements via frequent nonallelic homologous recombination. Microarray technologies have enabled the analysis of copy number variations (CNV), which may be associated with the risk of developing complex diseases. Through comparative genomic hybridisation in 1,298 patients, we detected 18 cases with chromosome 16 CNV. We identified 2recurrent CNV regions, including 1 at 16p13.11 in 4 patients and another at 16p11.2 in 7 patients. We also detected atypical chromosome 16 rearrangements in 7 patients. Furthermore, we noted an increased frequency of co-occurring genomic changes, supporting the two-hit hypothesis to explain the phenotypic variability in the clinical presentation of CNV syndromes. Our findings can contribute to the creation of a chromosome 16 disease map based on regions that may be associated with disease development.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xu Zhang ◽  
Li Liu ◽  
Yang Liu ◽  
Xin Pan

Uniparental disomy (UPD) is a specific type of chromosomal variant that has been detected in both prenatal diagnosis and neonates with advances in molecular genetic testing technologies [mainly chromosome microarray analysis (CMA) technologies containing single-nucleotide polymorphism (SNP) probes]. In this case, we performed non-invasive prenatal genetic testing (NIPT) to screen fetuses for aneuploidy and detected the presence of aneuploidy chimerism and UPD by CMA, including SNP analysis and whole-exome sequencing, to detect pathogenic variants within the genome. The NIPT results suggested an increased number of fetal chromosome 16, and the CMA results indicated that it was the first case of holistic paternal UPD16 with isodisomy combined with heterodisomy, although no abnormal phenotype was seen in the newborn at postnatal follow-up. The homozygous region of the isodimer combined with the heterodimer is smaller than that of the complete isodimer, and it is less prone to recessive genetic diseases. A retrospective analysis of this case of paternally derived UPD16 was used to explore the uniparental diploid origin of chromosome 16 and to provide some reference for genetic counseling and prenatal diagnosis.


Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1457
Author(s):  
Tien-Yu Yao ◽  
Wan-Ju Wu ◽  
Kim-Seng Law ◽  
Mei-Hui Lee ◽  
Shun-Ping Chang ◽  
...  

This study examined the molecular characterization of a prenatal case with true fetal mosaicism of small supernumerary marker chromosome 16 (sSMC(16)). A 41-year-old female underwent amniocentesis at 19 weeks of gestation due to advanced maternal age. Chromosomal analysis for cultured amniocytes revealed a karyotype of 47,XY,+mar[4]/46,XY[16]. Spectral karyotyping and metaphase fluorescence in situ hybridization (FISH) demonstrated that the sSMC was derived from chromosome 16 (47,XY,+mar.ish der(16)(D16Z1+)[13/20]). Confined placental mosaicism was initially suspected because the prenatal ultrasound revealed a normal structure and the pregnancy was uneventful. However, interphase FISH of cord blood performed at 28 weeks of gestation showed 20% mosaicism of trisomy chromosome 16 (nuc ish(D16Z2×3)[40/200]). Chromosome microarray analysis further demonstrated 55% mosaicism of an 8.02 Mb segmental duplication at the subcentromeric region of 16p12.1p11.1 (arr[GRCh37] 16p12.1p11.1(27021975_35045499)×3[0.55]). The results demonstrated a true fetal mosaicism of sSMC(16) involving chromosome16p12.1p11.1 that is associated with chromosome 16p11.2 duplication syndrome (OMIM #614671). After non-directive genetic counseling, the couple opted for late termination of pregnancy. This case illustrated the use of multiple molecular cytogenetic tools to elucidate the origin and structure of sSMC, which is crucial for prenatal counseling, decision making, and clinical management.


2021 ◽  
Author(s):  
David Frederick Callen

In breast cancer loss of the long-arm of chromosome 16 is frequently observed, suggesting this is the location of tumour suppressor gene or genes. Previous studies localised two or three minimal regions for the LOH genes in the vicinity of 16q22.1 and 16q24.3, however the identification of the relevant tumour suppressor genes has proved elusive. The current availability of large datasets from breast cancers, that include both gene expression and gene dosage of the majority of genes on the long-arm of chromosome 16 (16q), provides the opportunity to revisit the identification of the critical tumour suppressor genes in this region. Utilising such data it was found 37% of breast cancers are single copy for all genes on 16q and this was more frequent in the luminal A and B subtypes. Since luminal breast cancers are associated with a superior prognosis this is consistent with previous data associating loss of 16q with breast cancers of better survival. Previous chromosomal studies found a karyotype with a der t(1;16) to be the basis for a proportion of breast cancers with loss of 16q. Use of data indicating the dosage of genes 21.9% of breast cancers were consistent with a der t(1;16) as the basis for loss of 16q. In such cases there is both loss of one dose of 16q and three doses of 1q suggesting a tumour suppressor function associated with long-arm of chromosome 16 and an oncogene function for 1q. Previous studies have approached the identification of tumour suppressor genes on 16q by utilising breast cancers with partial loss of 16q with the assumption regions demonstrating the highest frequency of loss of heterozygosity pinpoint the location of tumour suppressor genes. Sixty one of 816 breast cancers in this study showed partial loss of 16q defined by dosage of 357 genes. There was no compelling evidence for hot-spots of localised LOH which would pinpoint major tumour suppressor genes. Comparison of gene expression data between various groups of breast cancers based on 16q dosage was used to identify possible tumour suppressor genes. Combining these comparisons, together with known gene functional data, allowed the identification of eleven potential tumour suppressor genes spread along 16q. It is proposed that breast cancers with a single copy of 16q results in the simultaneous reduction of expression of several tumour suppressor genes. The existence of multiple tumour suppressor genes on 16q would severely limit any attempt to pinpoint tumour suppressor genes locations based on localised hot-spots of loss of heterozygosity. Interestingly, the majority of the identified tumour suppressor genes are involved in the modulation of wild-type p53 function. This role is supported by the finding that 80.5% of breast cancers with 16q loss have wild-type p53. TP53 is the most common mutated gene in cancer. In cancers with wild-type p53 would require other strategies to circumvent the key tumour suppressor role of p53. In breast cancers with complete loss of one dose of 16q it is suggested this provides a mechanism that contributes to the amelioration of p53 function.


Author(s):  
Ambra Paolini ◽  
Vincenzo Nasillo ◽  
Beatrice Lusenti ◽  
Luca Roncati ◽  
Enrico Tagliafico ◽  
...  
Keyword(s):  

Author(s):  
Adam J Santanasto ◽  
Mary K Wojczynski ◽  
Ryan K Cvejkus ◽  
Shiow Lin ◽  
Lihua Wang ◽  
...  

Abstract Background Gait speed is a powerful indicator of health with aging. Potential genetic contributions to gait speed and its decline with aging are not well defined. We determined the heritability of and potential genetic regions underlying change in gait speed using longitudinal data from 2379 individuals belonging to 509 families in the Long Life Family Study (mean age 64±12, range 30–110 years; 45% men). Methods Gait-speed was measured over 4 meters at baseline and follow up (7±1 years). Quantitative trait linkage analyses were completed using pedigree-based maximum-likelihood methods with logarithm of the odds (LOD) scores >3.0 indicating genome-wide significance. We also performed linkage analysis in the top 10% of families contributing to LOD scores to allow for heterogeneity among families (HLOD). Data were adjusted for age, sex, height, and field center. Results At baseline, 26.9% of individuals had “slow” gait-speed <1.0 m/s (mean: 1.1±0.2 m/s) and gait speed declined at a rate of -0.02±0.03 m/s per year (p<0.0001). Baseline and change in gait-speed were significantly heritable (h  2 = 0.24-0.32, p<0.05). We did not find significant evidence for linkage for baseline gait speed; however, we identified a significant locus for change in gait speed on chromosome 16p (LOD=4.2). A subset of 21 families contributed to this linkage peak (HLOD = 6.83). Association analyses on chromosome 16 showed that the strongest variant resides within the ADCY9 gene. Conclusion Further analysis of the chromosome 16 region, and ADCY9 gene, may yield new insight on the biology of mobility decline with aging.


Sign in / Sign up

Export Citation Format

Share Document