scholarly journals The Contribution of the Y Chromosome to Hybrid Male Sterility in House Mice

Genetics ◽  
2012 ◽  
Vol 191 (4) ◽  
pp. 1271-1281 ◽  
Author(s):  
Polly Campbell ◽  
Jeffrey M. Good ◽  
Matthew D. Dean ◽  
Priscilla K. Tucker ◽  
Michael W. Nachman
2018 ◽  
Author(s):  
Samuel J. Widmayer ◽  
David L. Aylor

AbstractHybrid male sterility (HMS) is a unique type of reproductive isolation commonly observed between house mouse (Mus musculus) subspecies in the wild and in laboratory crosses. We identified hybrids that display three distinct trajectories of fertility despite having identical genotypes at the major HMS gene Prdm9 and the X Chromosome. In each case, we crossed female PWK/PhJ mice representative of the M.m.musculus subspecies to males from classical inbred strains representative of M.m.domesticus: 129S1/SvImJ, A/J, C57BL/6J, and DBA/2J. PWK129S1 males are always sterile, while PWKDBA2 males escape HMS. In addition, we observe age-dependent sterility in PWKB6 and PWKAJ males. These males are fertile between 15 and 35 weeks with moderate penetrance. These results point to multiple segregating HMS modifier alleles, some of which have an age-dependent mode of action. Age-dependent mechanisms could have broad implications for the maintenance of reproductive barriers in nature.Author SummaryTwo subspecies of house mice show partial reproductive barriers in nature, and may be in the process of speciation. We used mice derived from each subspecies to replicate hybrid male sterility (HMS) in laboratory mice. Two major genetic factors are well established as playing a role in mouse HMS, but the number of additional factors and their mechanisms are unknown. We characterized reproductive trait variation in a set of hybrid male mice that were specifically designed to eliminate the effects of known genetic factors. We discovered that age played an important role in fertility of some hybrids. These hybrid males showed a delayed onset of fertility, then became fertile for only a few weeks. Across all hybrids males in our study, we observed three distinct trajectories of fertility: complete fertility, complete sterility, and age-dependent fertility. These results point to two or more critical HMS variants with large enough effects to completely restore fertility. This study advances our understanding of the genetic architecture and biological mechanisms of reproductive isolation in mice.


Evolution ◽  
2007 ◽  
Vol 0 (0) ◽  
pp. 071115145922007-??? ◽  
Author(s):  
Jeffrey M. Good ◽  
Mary Ann Handel ◽  
Michael W. Nachman

Genetics ◽  
2012 ◽  
Vol 191 (3) ◽  
pp. 917-934 ◽  
Author(s):  
Michael A. White ◽  
Maria Stubbings ◽  
Beth L. Dumont ◽  
Bret A. Payseur

Genetics ◽  
2008 ◽  
Vol 179 (4) ◽  
pp. 2213-2228 ◽  
Author(s):  
Jeffrey M. Good ◽  
Matthew D. Dean ◽  
Michael W. Nachman

Genetics ◽  
1993 ◽  
Vol 134 (1) ◽  
pp. 251-260 ◽  
Author(s):  
L W Zeng ◽  
R S Singh

Abstract Haldane's rule (i.e., the preferential hybrid sterility and inviability of heterogametic sex) has been known for 70 years, but its genetic basis, which is crucial to the understanding of the process of species formation, remains unclear. In the present study, we have investigated the genetic basis of hybrid male sterility using Drosophila simulans, Drosophila mauritiana and Drosophila sechellia. An introgression of D. sechellia Y chromosome into a fairly homogenous background of D. simulans did not show any effect of the introgressed Y on male sterility. The substitution of D. simulans Y chromosome into D. sechellia, and both reciprocal Y chromosome substitutions between D. simulans and D. mauritiana were unsuccessful. Introgressions of cytoplasm between D. simulans and D. mauritiana (or D. sechellia) also did not have any effect on hybrid male sterility. These results rule out the X-Y interaction hypothesis as a general explanation of Haldane's rule in this species group and indicate an involvement of an X-autosome interaction. Models of symmetrical and asymmetrical X-autosome interaction have been developed which explain the Y chromosome substitution results and suggest that evolution of interactions between different genetic elements in the early stages of speciation is more likely to be of an asymmetrical nature. The model of asymmetrical X-autosome interaction also predicts that different sets of interacting genes may be involved in different pairs of related species and can account for the observation that hybrid male sterility in many partially isolated species is often nonreciprocal or unidirectional.


Genetics ◽  
1998 ◽  
Vol 150 (2) ◽  
pp. 745-754 ◽  
Author(s):  
Xulio R Maside ◽  
José P Barral ◽  
Horacio F Naveira

Abstract One of the most frequent outcomes of interspecific hybridizations in Drosophila is hybrid male sterility. Genetic dissection of this reproductive barrier has revealed that the number of responsible factors is very high and that these factors are frequently engaged in complex epistatic interactions. Traditionally, research strategies have been based on contrasting introgressions of chromosome segments that produce male sterility with those that allow fertility. Few studies have investigated the phenotypes associated with the boundary between fertility and sterility. In this study, we cointrogressed three different X chromosome segments from Drosophila mauritiana into D. simulans. Hybrid males with these three segments are usually fertile, by conventional fertility assays. However, their spermatogenesis shows a significant slowdown, most manifest at lower temperatures. Each of the three introgressed segments retards the arrival of sperm to the seminal vesicles. Other small disturbances in spermatogenesis are evident, which altogether lead to an overall reduction in the amount of motile sperm in their seminal vesicles. These results suggest that a delay in the timing of spermatogenesis, which might be brought about by the cumulative action of many different factors of minor segment, may be the primary cause of hybrid male sterility.


Genetics ◽  
2004 ◽  
Vol 166 (2) ◽  
pp. 789-796 ◽  
Author(s):  
Kyoichi Sawamura ◽  
John Roote ◽  
Chung-I Wu ◽  
Masa-Toshi Yamamoto

Abstract Recent genetic analyses of closely related species of Drosophila have indicated that hybrid male sterility is the consequence of highly complex synergistic effects among multiple genes, both conspecific and heterospecific. On the contrary, much evidence suggests the presence of major genes causing hybrid female sterility and inviability in the less-related species, D. melanogaster and D. simulans. Does this contrast reflect the genetic distance between species? Or, generally, is the genetic basis of hybrid male sterility more complex than that of hybrid female sterility and inviability? To clarify this point, the D. simulans introgression of the cytological region 34D-36A to the D. melanogaster genome, which causes recessive male sterility, was dissected by recombination, deficiency, and complementation mapping. The 450-kb region between two genes, Suppressor of Hairless and snail, exhibited a strong effect on the sterility. Males are (semi-)sterile if this region of the introgression is made homozygous or hemizygous. But no genes in the region singly cause the sterility; this region has at least two genes, which in combination result in male sterility. Further, the males are less fertile when heterozygous with a larger introgression, which suggests that dominant modifiers enhance the effects of recessive genes of male sterility. Such an epistatic view, even in the less-related species, suggests that the genetic complexity is special to hybrid male sterility.


2020 ◽  
Author(s):  
Samuel J. Widmayer ◽  
Mary Ann Handel ◽  
David L. Aylor

AbstractHybrid male sterility (HMS) contributes to reproductive isolation commonly observed among house mouse (Mus musculus) subspecies, both in the wild and in laboratory crosses. Incompatibilities involving specific Prdm9 alleles and certain Chromosome (Chr) X genotypes are known determinants of fertility and HMS, and previous work in the field has demonstrated that genetic background modifies these two major loci. We constructed hybrids that have identical genotypes at Prdm9 and identical X chromosomes, but differ widely across the rest of the genome. In each case, we crossed female PWK/PhJ mice representative of the M. m. musculus subspecies to males from a classical inbred strain representative of M. m. domesticus: 129S1/SvImJ, A/J, C57BL/6J, or DBA/2J. We detected three distinct trajectories of fertility among the hybrids using breeding experiments. The PWK129S1 males were always infertile. PWKDBA2 males were fertile, despite their genotypes at the major HMS loci. We also observed age-dependent changes in fertility parameters across multiple genetic backgrounds. The PWKB6 and PWKAJ males were always infertile before 15 weeks and after 35 weeks, yet some PWKB6 and PWKAJ males were fertile between fifteen and 35 weeks. This observation could resolve previous contradictory reports about the fertility of PWKB6. Taken together, these results point to multiple segregating HMS modifier alleles, some of which have age-related modes of action. The ultimate identification of these alleles and their age-related mechanisms will advance understanding both of the genetic architecture of HMS and of how reproductive barriers are maintained between house mouse subspecies.


Sign in / Sign up

Export Citation Format

Share Document