hybrid male sterility
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 19)

H-INDEX

21
(FIVE YEARS 3)

Author(s):  
Linda Hagberg ◽  
Enrique Celemin ◽  
Iker Irisarri ◽  
Oliver Hawlitschek ◽  
J L Bella ◽  
...  

Although the process of species formation is notoriously idiosyncratic, the observation of pervasive patterns of reproductive isolation across species pairs suggests that generalities, or “rules”, underlie species formation in all animals. Haldane’s rule states that whenever a sex is absent, rare or sterile in a cross between two taxa, that sex is usually the heterogametic sex. Yet, understanding how Haldane’s rule first evolves and whether it is associated to genome wide barriers to gene flow remains a challenging task because this rule is usually studied in highly divergent taxa that no longer hybridize in nature. Here, we address these questions using the meadow grasshopper Pseudochorthippus parallelus where populations that readily hybridize in two natural hybrid zones show hybrid male sterility in laboratorial crosses. Using mitochondrial data, we infer that such populations have diverged some 100,000 years ago, surviving multiple glacial periods in isolated Pleistocenic refugia. Nuclear data shows that secondary contact has led to extensive introgression throughout the species range, including between populations showing hybrid male sterility. We find repeatable patterns of genomic differentiation across the two hybrid zones, yet such patterns are consistent with shared genomic constraints across taxa rather than their role in reproductive isolation. Together, our results suggest that Haldane’s rule can evolve relatively quickly within species, particularly when associated to strong demographic changes. At such early stages of species formation, hybrid male sterility still permits extensive gene flow, allowing future studies to identify genomic regions associated with reproductive barriers.


2021 ◽  
Vol 12 ◽  
Author(s):  
Daven C. Presgraves ◽  
Colin D. Meiklejohn

The three fruitfly species of the Drosophila simulans clade— D. simulans, D. mauritiana, and D. sechellia— have served as important models in speciation genetics for over 40 years. These species are reproductively isolated by geography, ecology, sexual signals, postmating-prezygotic interactions, and postzygotic genetic incompatibilities. All pairwise crosses between these species conform to Haldane’s rule, producing fertile F1 hybrid females and sterile F1 hybrid males. The close phylogenetic proximity of the D. simulans clade species to the model organism, D. melanogaster, has empowered genetic analyses of their species differences, including reproductive incompatibilities. But perhaps no phenotype has been subject to more continuous and intensive genetic scrutiny than hybrid male sterility. Here we review the history, progress, and current state of our understanding of hybrid male sterility among the D. simulans clade species. Our aim is to integrate the available information from experimental and population genetics analyses bearing on the causes and consequences of hybrid male sterility. We highlight numerous conclusions that have emerged as well as issues that remain unresolved. We focus on the special role of sex chromosomes, the fine-scale genetic architecture of hybrid male sterility, and the history of gene flow between species. The biggest surprises to emerge from this work are that (i) genetic conflicts may be an important general force in the evolution of hybrid incompatibility, (ii) hybrid male sterility is polygenic with contributions of complex epistasis, and (iii) speciation, even among these geographically allopatric taxa, has involved the interplay of gene flow, negative selection, and positive selection. These three conclusions are marked departures from the classical views of speciation that emerged from the modern evolutionary synthesis.


Genetics ◽  
2020 ◽  
Vol 216 (2) ◽  
pp. 585-597 ◽  
Author(s):  
Samuel J. Widmayer ◽  
Mary Ann Handel ◽  
David L. Aylor

Hybrid male sterility (HMS) contributes to reproductive isolation commonly observed among house mouse (Mus musculus) subspecies, both in the wild and in laboratory crosses. Incompatibilities involving specific Prdm9 alleles and certain Chromosome (Chr) X genotypes are known determinants of fertility and HMS, and previous work in the field has demonstrated that genetic background modifies these two major loci. We constructed hybrids that have identical genotypes at Prdm9 and identical X chromosomes, but differ widely across the rest of the genome. In each case, we crossed female PWK/PhJ mice representative of the M. m. musculus subspecies to males from a classical inbred strain representative of M. m. domesticus: 129S1/SvImJ, A/J, C57BL/6J, or DBA/2J. We detected three distinct trajectories of fertility among the hybrids using breeding experiments. The PWK129S1 males were always infertile. PWKDBA2 males were fertile, despite their genotypes at the major HMS loci. We also observed age-dependent changes in fertility parameters across multiple genetic backgrounds. The PWKB6 and PWKAJ males were always infertile before 12 weeks and after 35 weeks. However, some PWKB6 and PWKAJ males were transiently fertile between 12 and 35 weeks. This observation could resolve previous contradictory reports about the fertility of PWKB6. Taken together, these results point to multiple segregating HMS modifier alleles, some of which have age-related modes of action. The ultimate identification of these alleles and their age-related mechanisms will advance understanding both of the genetic architecture of HMS and of how reproductive barriers are maintained between house mouse subspecies.


2020 ◽  
Author(s):  
Samuel J. Widmayer ◽  
Mary Ann Handel ◽  
David L. Aylor

AbstractHybrid male sterility (HMS) contributes to reproductive isolation commonly observed among house mouse (Mus musculus) subspecies, both in the wild and in laboratory crosses. Incompatibilities involving specific Prdm9 alleles and certain Chromosome (Chr) X genotypes are known determinants of fertility and HMS, and previous work in the field has demonstrated that genetic background modifies these two major loci. We constructed hybrids that have identical genotypes at Prdm9 and identical X chromosomes, but differ widely across the rest of the genome. In each case, we crossed female PWK/PhJ mice representative of the M. m. musculus subspecies to males from a classical inbred strain representative of M. m. domesticus: 129S1/SvImJ, A/J, C57BL/6J, or DBA/2J. We detected three distinct trajectories of fertility among the hybrids using breeding experiments. The PWK129S1 males were always infertile. PWKDBA2 males were fertile, despite their genotypes at the major HMS loci. We also observed age-dependent changes in fertility parameters across multiple genetic backgrounds. The PWKB6 and PWKAJ males were always infertile before 15 weeks and after 35 weeks, yet some PWKB6 and PWKAJ males were fertile between fifteen and 35 weeks. This observation could resolve previous contradictory reports about the fertility of PWKB6. Taken together, these results point to multiple segregating HMS modifier alleles, some of which have age-related modes of action. The ultimate identification of these alleles and their age-related mechanisms will advance understanding both of the genetic architecture of HMS and of how reproductive barriers are maintained between house mouse subspecies.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Chen Feng ◽  
Huiqin Yi ◽  
Lihua Yang ◽  
Ming Kang

2020 ◽  
Vol 37 (7) ◽  
pp. 2084-2098 ◽  
Author(s):  
Rachel E Kerwin ◽  
Andrea L Sweigart

Abstract Divergence in gene expression regulation is common between closely related species and may give rise to incompatibilities in their hybrid progeny. In this study, we investigated the relationship between regulatory evolution within species and reproductive isolation between species. We focused on a well-studied case of hybrid sterility between two closely related yellow monkeyflower species, Mimulus guttatus and Mimulus nasutus, that is caused by two epistatic loci, hybrid male sterility 1 (hms1) and hybrid male sterility 2 (hms2). We compared genome-wide transcript abundance across male and female reproductive tissues (i.e., stamens and carpels) from four genotypes: M. guttatus, M. nasutus, and sterile and fertile progeny from an advanced M. nasutus–M. guttatus introgression line carrying the hms1–hms2 incompatibility. We observed substantial variation in transcript abundance between M. guttatus and M. nasutus, including distinct but overlapping patterns of tissue-biased expression, providing evidence for regulatory divergence between these species. We also found rampant genome-wide misexpression, but only in the affected tissues (i.e., stamens) of sterile introgression hybrids carrying incompatible alleles at hms1 and hms2. Examining patterns of allele-specific expression in sterile and fertile introgression hybrids, we found evidence for interspecific divergence in cis- and trans-regulation, including compensatory cis–trans mutations likely to be driven by stabilizing selection. Nevertheless, species divergence in gene regulatory networks cannot explain the vast majority of the gene misexpression we observe in Mimulus introgression hybrids, which instead likely manifests as a downstream consequence of sterility itself.


Epigenetics ◽  
2020 ◽  
Vol 15 (9) ◽  
pp. 914-931 ◽  
Author(s):  
Gong-Wei Zhang ◽  
Ling Wang ◽  
Huiyou Chen ◽  
Jiuqiang Guan ◽  
Yuhui Wu ◽  
...  

2020 ◽  
Vol 287 (1919) ◽  
pp. 20192291
Author(s):  
Rachelle L. Kanippayoor ◽  
Joshua H. M. Alpern ◽  
Amanda J. Moehring

When two species interbreed, the resulting hybrid offspring are often sterile, with the heterogametic (e.g. XY) hybrid usually being more severely affected. The prevailing theory for this pattern of sterility evokes divergent changes in separate lineages having maladaptive interactions when placed together in a hybrid individual, with recessive factors on the sex chromosome interacting with dominant factors on the autosomes. The effect of these interactions on gametogenesis should not be uniform across species pairs unless genetic divergence follows the same paths in different lineages or if a specific stage of gametogenesis is more susceptible to detrimental genetic interactions. Here, we perform a detailed cellular characterization of hybrid male sterility across three recently diverged species pairs of Drosophila . Across all three pairs, sterile hybrid sperm are alive but exhibit rapid nuclear de-condensation with age, with active, but non-differentiated, mitochondria. Surprisingly, all three sets of interspecies hybrids produce half of the number of sperm per round of spermatogenesis, with each sperm cell containing two tails. We identify non-disjunction failures during meiosis I as the likely cause. Thus, errors during meiosis I may be a general phenomenon underlying Drosophila male sterility, indicating either a heightened sensitivity of this spermatogenic stage to failure, or a basis to sterility other than the prevailing model.


Genomics ◽  
2019 ◽  
Vol 111 (6) ◽  
pp. 1447-1455
Author(s):  
Jianwei Shan ◽  
Zhongquan Cai ◽  
Yu Zhang ◽  
Hannan Xu ◽  
Jianglei Rao ◽  
...  

Genome ◽  
2019 ◽  
Vol 62 (10) ◽  
pp. 657-663 ◽  
Author(s):  
Alwyn Go ◽  
Doaa Alhazmi ◽  
Alberto Civetta

Drosophila pseudoobscura pseudoobscura and Drosophila pseudoobscura bogotana are two closely related subspecies with incomplete reproductive isolation. A genome-wide comparison of expression in hybrids relative to parental subspecies has been previously used to identify genes with significant changes in expression uniquely associated with the sterile condition. The misexpression (i.e., gene expression beyond levels found in parentals) of such genes could be directly linked to the onset of sterility or could alternatively be caused by incompatibilities in a hybrid genome without a direct link to sterility. Cell adhesion was previously found to be one of the largest gene ontologies with changes in expression linked to sterility. Here we used gene expression assays in fertile backcross male progeny, along with introgression progeny in which we swap a major hybrid male sterility (HMS) allele, to generate fertile and sterile males genotypically similar to F1sterile hybrids. We identify a cell adhesion gene (GA10921) whose change in expression is directly linked to sterility and modulated by a previously characterized HMS protein. GA10921 adds to our rather limited knowledge of changes in gene expression associated with HMS, and to the identification of gene interacting partners linked to HMS.


Sign in / Sign up

Export Citation Format

Share Document