THERMAL MATURITY OF UPPERMOST MIDDLE JURASSIC SEDIMENTS IN THE WEST SIBERIAN BASIN

1977 ◽  
Author(s):  
James W. Clarke ◽  
O.W. Girard ◽  
James Peterson ◽  
Jack Rachlin

Lithos ◽  
2005 ◽  
Vol 79 (3-4) ◽  
pp. 407-424 ◽  
Author(s):  
Andrew D. Saunders ◽  
Richard W. England ◽  
Marc K. Reichow ◽  
Rosalind V. White

Author(s):  
A. V. Maslov

Background. The lithogeochemical features of fine-grained detrital rocks (mudstones, shales, and fine-grained siltstones) allow, with a certain degree of success, the main parameters of the formation of sedimentary sequences to be reconstructed. These parameters include (primarily in terms of their REE and Th systematics) the types of river systems supplying thin terrigenous suspension in the sedimentation area: the rivers of the 1st category – large rivers with a catchment area of more than 100,000 km2; 2nd category – rivers feeding on the products of erosion of sedimentary deposits; 3rd category – rivers draining mainly igneous and metamorphic rocks; and 4th category – rivers carrying erosion products of volcanic associations.Aim. To reveal, based on the analysis of interrelationships between such parameters as (La/Yb)N, Eu/Eu* and the Th content, the types of river systems that fed the Jurassic and Lower Cretaceous deposits of the Shaim oil and gas region (OGR) (Sherkalinsky, Tyumen, Abalak and Mulymya formations) and the region of the North Pokachevsky field of the Shirotnoe Priobye region (Sherkalinsky, Tyumen and Bazhenov formations, Lower Cretaceous deposits).Materials and methods. The ICP MS data for almost 100 samples of mudstones and fine-grained clayey siltstones were used to analyse the features of distribution of lanthanides and Th in the Jurassic and Lower Cretaceous clayey rocks of the Shaim OGR and the area of the North Pokachevsky deposits. Individual and average composition points for formations, members and layers were plotted on the (La/Yb)N-Eu/Eu*, (La/Yb)N–Th diagrams developed by us with classification areas of the composition of fine suspended material of modern rivers of different categories.Results and conclusion. The results presented in the article showed that during the formation of the deposits of the Shaim OGR in the Early and Middle Jurassic, erosion affected either mainly sedimentary formations or paleo-catchment areas that were very variegated in their rock composition. In the Late Jurassic, the source area was, most likely, a volcanic province, composed mainly of igneous rocks of the basic composition, and located within the Urals. This conclusion suggested that the transfer of clastic material from the Urals to the Urals part of the West Siberian basin “revived” much earlier than the Hauterivian. The Jurassic-Lower Cretaceous section of the vicinity of the North Pokachevsky field was almost entirely composed of thin aluminosilicaclastics formed due to the erosion of volcanic formations. These volcanic formations were located, as followed from the materials of earlier performed paleogeographic reconstructions, probably within the Altai-Sayan region or Northern Kazakhstan. Thus, the supply of detrital material in the considered territories of the West Siberian basin had a number of significant differences in the Jurassic and early Cretaceous.


Fact Sheet ◽  
2008 ◽  
Author(s):  
Christopher J. Schenk ◽  
Kenneth J. Bird ◽  
Ronald R. Charpentier ◽  
Donald L. Gautier ◽  
David W. Houseknecht ◽  
...  

2011 ◽  
Vol 149 (1) ◽  
pp. 19-38 ◽  
Author(s):  
ALI SHEKARIFARD ◽  
FRANÇOIS BAUDIN ◽  
KAZEM SEYED-EMAMI ◽  
JOHANN SCHNYDER ◽  
FATIMA LAGGOUN-DEFARGE ◽  
...  

AbstractOrganic petrography and geochemical analyses have been carried out on shales, carbonaceous shales and coals of the Shemshak Group (Upper Triassic–Middle Jurassic) from 15 localities along the Alborz Range of Northern Iran. Thermal maturity of organic matter (OM) has been investigated using vitrinite reflectance, Rock-Eval pyrolysis and elemental analysis of kerogen. Reflectance of autochthonous vitrinite varies from 0.6 to 2.2% indicating thermally early-mature to over-mature OM in the Shemshak Group, in agreement with other maturity parameters used. The shales of the Shemshak Group are characterized by poor to high residual organic carbon contents (0.13 to 5.84%) and the presence of hydrogen-depleted OM, predominantly as a consequence of oxidation of OM at the time of deposition and the hydrogen loss during petroleum generation. According to light-reflected microscopy results, vitrinite/vitrinite-like macerals are dominant in the kerogen concentrates from the shaly facies. The coals and carbonaceous shales of the Shemshak Group show a wide range in organic carbon concentration (3.5 to 88.6%) and composition (inertinite- and vitrinite-rich types), and thereby different petroleum potentials. Thermal modelling results suggest that low to moderate palaeo-heat flow, ranging from 47 to 79 mW m−2 (57 mW m−2 on average), affected the Central-Eastern Alborz basin during Tertiary time, the time of maximum burial of the Shemshak Group. The maximum temperature that induced OM maturation of the Shemshak Group seems to be related to its deep burial rather than to a very strong heat flow related to an uppermost Triassic–Liassic rifting. The interval of petroleum generation in the most deeply buried part of the Shemshak Group (i.e. Tazareh section) corresponds to Middle Jurassic–Early Cretaceous times. Exhumation of the Alborz Range during Late Neogene time, especially along the axis of the Central-Eastern Alborz, where maximum vitrinite reflectance values are recorded, probably destroyed possible petroleum accumulations. However, on the northern flank of the Central-Eastern Alborz, preservation of petroleum accumulations may be expected. The northern part of the basin therefore seems the best target for petroleum exploration.


Sign in / Sign up

Export Citation Format

Share Document