ATOMIC MODELS OF THE STRUCTURE OF NIOBIUM SILICIDES IN NB-SI IN SITU COMPOSITES

2017 ◽  
Vol 58 (3) ◽  
pp. 519-525 ◽  
Author(s):  
E. N. Kablov ◽  
N. A. Kuzmina ◽  
N. N. Eremin ◽  
I. L. Svetlov ◽  
A. V. Neyman

1998 ◽  
Vol 4 (S2) ◽  
pp. 278-279
Author(s):  
B.P. Bewlay ◽  
J.A. Sutliff

Directionally solidified in-situ composites based on niobium and niobium silicides, such as Nb5Si3 and Nb3Si, are presently under investigation as structural materials [1, 2], Alloying additions of elements such as Hf, Ti and Mo to these silicides are also being explored in order to increase strength and oxidation resistance. The present paper describes the effect of Hf, Mo and Ti additions on microstructure and microtexture of high temperature silcide-based in-situ composites.Alloys were prepared from high purity elements (>99.9%) using induction levitation melting in a segmented water-cooled copper crucible. The alloys were directionally solidified using the Czochralski method [2], Phase identification was performed using scanning electron microscopy, electron microprobe analysis (EMPA), and automated electron back scattering pattern (EBSP) analysis. Using EBSP, positive phase identification was accomplished by direct comparison of the location and character of the diffraction bands in the experimental pattern with those calculated from simulated patterns generated using the possible structure types.


2021 ◽  
pp. 2001464
Author(s):  
Stefan Gabel ◽  
Sven Giese ◽  
Benoit Merle ◽  
Ioannis Sprenger ◽  
Martin Heilmaier ◽  
...  

2007 ◽  
Vol 336-338 ◽  
pp. 1406-1408 ◽  
Author(s):  
Xiao Hui Zhi ◽  
Jian Dong Xing ◽  
Yi Min Gao ◽  
Xiao Jun Wu ◽  
Xiao Le Cheng

In the present study, a Fe-Cr-C hypereutectic alloy was prepared from industry-grade materials and subjected to modification and fluctuation, through which new types of particle reinforced composites, hypereutectic in-situ composite, was generated. The structures of the composite modified or not with the range of fluctuation addition from 0% to 2.8wt.%, were investigated. The primary carbides were refined with the addition of modifying agents and fluctuations. Increasing the amount of fluctuation resulted in finer primary carbides. At 1380oC, with the addition of modifying agents and 2.8wt.% fluctuation addition, the structure was well modified.


2015 ◽  
Vol 646 ◽  
pp. 332-340 ◽  
Author(s):  
Xinjiang Zhang ◽  
Yibin Li ◽  
Xiaodong He ◽  
Xueran Liu ◽  
Qiong Jiang ◽  
...  

2012 ◽  
Vol 1516 ◽  
pp. 255-260 ◽  
Author(s):  
G. Zhang ◽  
L. Hu ◽  
W. Hu ◽  
G. Gottstein ◽  
S. Bogner ◽  
...  

ABSTRACTMo fiber reinforced NiAl in-situ composites with a nominal composition Ni-43.8Al-9.5Mo (at.%) were produced by specially controlled directional solidification (DS) using a laboratory-scale Bridgman furnace equipped with a liquid metal cooling (LMC) device. In these composites, single crystalline Mo fibers were precipitated out through eutectic reaction and aligned parallel to the growth direction of the ingot. Mechanical properties, i.e. the creep resistance at high temperatures (HT, between 900 °C and 1200 °C) and the fracture toughness at room temperature (RT) of in-situ NiAl-Mo composites, were characterized by tensile creep (along the growth direction) and flexure (four-point bending, vertical to the growth direction) tests, respectively. In the current study, a steady creep rate of 10-6s-1 at 1100 °C under an initial applied tensile stress of 150MPa was measured. The flexure tests sustained a fracture toughness of 14.5 MPa·m1/2at room temperature. Compared to binary NiAl and other NiAl alloys, these properties showed a remarkably improvement in creep resistance at HT and fracture toughness at RT that makes this composite a potential candidate material for structural application at the temperatures above 1000 °C. The mechanisms responsible for the improvement of the mechanical properties in NiAl-Mo in-situ composites were discussed based on the investigation results.


JOM ◽  
1999 ◽  
Vol 51 (4) ◽  
pp. 32-36 ◽  
Author(s):  
B. P. Bewlay ◽  
M. R. Jackson ◽  
P. R. Subramanian

Sign in / Sign up

Export Citation Format

Share Document