Mechanical properties of NiAl-Mo composites produced by specially controlled directional solidification

2012 ◽  
Vol 1516 ◽  
pp. 255-260 ◽  
Author(s):  
G. Zhang ◽  
L. Hu ◽  
W. Hu ◽  
G. Gottstein ◽  
S. Bogner ◽  
...  

ABSTRACTMo fiber reinforced NiAl in-situ composites with a nominal composition Ni-43.8Al-9.5Mo (at.%) were produced by specially controlled directional solidification (DS) using a laboratory-scale Bridgman furnace equipped with a liquid metal cooling (LMC) device. In these composites, single crystalline Mo fibers were precipitated out through eutectic reaction and aligned parallel to the growth direction of the ingot. Mechanical properties, i.e. the creep resistance at high temperatures (HT, between 900 °C and 1200 °C) and the fracture toughness at room temperature (RT) of in-situ NiAl-Mo composites, were characterized by tensile creep (along the growth direction) and flexure (four-point bending, vertical to the growth direction) tests, respectively. In the current study, a steady creep rate of 10-6s-1 at 1100 °C under an initial applied tensile stress of 150MPa was measured. The flexure tests sustained a fracture toughness of 14.5 MPa·m1/2at room temperature. Compared to binary NiAl and other NiAl alloys, these properties showed a remarkably improvement in creep resistance at HT and fracture toughness at RT that makes this composite a potential candidate material for structural application at the temperatures above 1000 °C. The mechanisms responsible for the improvement of the mechanical properties in NiAl-Mo in-situ composites were discussed based on the investigation results.

1994 ◽  
Vol 364 ◽  
Author(s):  
B. P. Bewlay ◽  
M. R. Jackson ◽  
W. J. Reeder ◽  
H. A. Lipsitt

AbstractIn-situ composites based on binary Nb-Si alloys and consisting of a Nb solid solution with Nb3Si or Nb5Si3 have shown a promising combination of low temperature and high temperature mechanical properties. The environmental resistance and room temperature fracture toughness of these composites can be further enhanced by additions such as Ti, Hf, Cr, and Al. In the present study, ternary Nb-Ti-Si alloys were prepared by directional solidification to generate aligned two and three phase composites containing a Nb solid solution with Nb3Si and/or Nb5Si3. The present paper will describe microstructures, phase equilibria and fracture toughness of these composites. The improvement in the room temperature fracture toughness over binary Nb-Nb5Si3 composites is discussed.


2006 ◽  
Vol 306-308 ◽  
pp. 941-946
Author(s):  
Sheng Wu Wang ◽  
Tatsuo Tabaru ◽  
Hisatoshi Hirai ◽  
Hideto Ueno

Nb-base in-situ composites with the base composition of Nb-18Si-2HfC were prepared by conventional arc-melting. Their microstructures and mechanical properties, such as high-temperature strength and room temperature fracture toughness, were investigated to elucidate the effects of Re alloying. The in-situ composites predominantly have eutectic microstructures consisting of an Nb solid solution (NbSS) and Nb5Si3. The compressive strength increased with the increasing Re contents at 1470K and not at 1670 K. The strengthening effect observed at 1470 K is higher than that by W and Mo. Re alloying of about 2 % is valuable for improving both the high temperature strength and room temperature fracture toughness of Nb-18Si-2HfC base materials.


2015 ◽  
Vol 47 (3) ◽  
pp. 311-317 ◽  
Author(s):  
F. Wang ◽  
N. Fan ◽  
J. Zhu ◽  
H. Jiang

Al2O3/TiAl composites were successfully fabricated from powder mixtures of Ti, Al, TiO2, Cr2O3 and Nb2O5 by a hot-press-assisted exothermic dispersion method. The effect of the Cr2O3 and Nb2O5 addition on the microstructures and mechanical properties of Al2O3/TiAl composites was characterized. The results showed that the specimens are mainly composed of TiAl, Ti3Al, Al2O3, NbAl3 and Cr2Al. The Vicker-hardness and density of Al2O3/TiAl composites increase gradually with the increase of Nb2O5 content. When the Nb2O5 content was 6.54 wt %, the flexural strength and fracture toughness of the composites have a maximum values of 789.79 MPa and 9.69 MPa?m1/2, respectively. The improvement of mechanical properties is discussed in detail.


2001 ◽  
Vol 9 (9) ◽  
pp. 827-834 ◽  
Author(s):  
Won-Yong Kim ◽  
Hisao Tanaka ◽  
Akio Kasama ◽  
Shuji Hanada

2004 ◽  
Vol 261-263 ◽  
pp. 1439-1444 ◽  
Author(s):  
Sheng Wu Wang ◽  
Hisatoshi Hirai ◽  
Tatsuo Tabaru ◽  
A. Kitahara ◽  
Hideto Ueno

Nb base in-situ composites with the base composition of Nb-5Mo-2W-18Si were prepared by conventional arc-melting and induction heating floating zone melting followed by directional solidification. To investigate the effect of HfC addition, Nb was replaced with 0, 1 and 2 mol% HfC. The in-situ composites predominantly have an eutectic microstructure consisting of Nb solid solution (NbSS) and (Nb,Mo,W))5Si3 (5-3 silicide). The strength at 1470 K and 1670 K increases without fracture toughness decreasing, with increasing the HfC content. Directional solidification also improves the strength at the high temperature. The slip band under the shearing stress occurs in the NbSS during plastic deformation, which contributes to suppress microcrack propagation. It seems that HfC addition reinforces the bonding strength at grain boundary or NbSS/5-3 silicide interface.


1993 ◽  
Vol 322 ◽  
Author(s):  
R. Suryanarayanan ◽  
S. M. L. Sastry ◽  
K. L. Jerina

AbstractSubstantial improvements have been reported in high temperature strength and creep resistance, and room temperature fracture toughness of molybdenum disilicide (MoSi2) reinforced with ductile or brittle reinforcements. The influence of Hot Isostatic Pressing (HIP) process parameters on the mechanical properties of MoSi2 based alloys was studied. Monolithic MoSi2 powder and MoSi2 powder blended with either niobium powder or silicon carbide whisker reinforcements were consolidated by HIP at 1200 − 1400°C, 207 MPa, and 1 - 4 hrs. The HIP'ed compacts were characterized for compression strength and creep resistance at 1100-1300°C. Fracture toughness was measured on single edge notched rectangular specimens at room temperature. Mechanical properties were correlated with post-HIP microstructural features.


2019 ◽  
Vol 971 ◽  
pp. 59-64
Author(s):  
Guan Qun Zhuo ◽  
Lin Fen Su ◽  
Kai Yong Jiang

The Nb-24Ti-12Si-14Cr-2Al-2Hf-0.1Y (at.%) alloys were fabricated by directional solidification with selected withdrawal rate 1.2 and 18 mm/min, followed by a heat treatment at 1375 °C for 10 h. The microstructure of directional solidified samples were composed of NbSS, Cr2Nb and eutectics (NbSS+Nb5Si3), aligning with the growth direction. After heat treatment, the NbSS in the eutectic structures and NbSS dendrites were connected to form the matrix, and the silicide and Cr2Nb tended to spheroidize. The sample prepared by higher withdrawal rate plus heat treament shows higher average KQ values. The results suggested that the Nb-Si based alloy showed higher room-temperature fracture toughness when the microstructure consists of continuous NbSS distributed with finer Nb5Si3 and Cr2Nb.


2012 ◽  
Vol 44 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Kun Zhang ◽  
Wang Fen ◽  
Jianfeng Zhu ◽  
Huae Wu

Al2O3/TiAl in situ composites doped with Cr and V2O5 were successfully prepared from Ti, Al, TiO2, Cr and V2O5 by hot pressing. The effect of in situ formed Al2O3 content on the phase composition, microstructure and mechanical properties of Al2O3/TiAl composites were investigated. The results show that the as-synthesized composites mainly consisted of ?-TiAl/?2-Ti3Al matrix and dispersive Al2O3 reinforcing phases. The in situ formed fine Al2O3 ceramic particles mainly disperse on the grain boundaries of TiAl, resulting in refinement of TiAl matrix, which improves the mechanical properties of the Al2O3/TiAl in situ composite. The composite with 7.54 at.% Al2O3 possesses the maximum flexural strength and fracture toughness of 335.38 MPa and 5.39 MPa m1/2, respectively. The strengthening mechanism was also discussed in detail.


2012 ◽  
Vol 21 (1) ◽  
pp. 18-25 ◽  
Author(s):  
Jian-Fei Zhang ◽  
Jun Shen ◽  
Zhao Shang ◽  
Zhou-Rong Feng ◽  
Ling-Shui Wang ◽  
...  

2006 ◽  
Vol 326-328 ◽  
pp. 1857-1860
Author(s):  
Hong Mei Chen ◽  
Hua Shun Yu ◽  
Jing Zhang ◽  
Lin Zhang ◽  
Guang Hui Min

The Al2O3-TiC/Al composites were prepared by injecting CO2 gas into Ti contained Al-Si alloy melts. The microstructure of the composites was examined by XRD, SEM and TEM. It was indicated that both Al2O3 and TiC particles can be formed by the in situ reaction of CO2 with Ti and Al in the melten alloys. The Al2O3 and TiC particles in size of 0.3~1.5μm distributed uniformly in the matrix. The volume fraction of the particles is mainly depend upon the time of CO2 injection.The tensile strength at room temperature of the composites can reach 346.08MPa and the hardness is 149.6MPa HBS, repectively, which are higher than those of the matrix alloy.


Sign in / Sign up

Export Citation Format

Share Document