scholarly journals Proof-search of propositional intuitionistic logic sequents by means of classical logic calculus

2008 ◽  
Vol 48 ◽  
Author(s):  
Romas Alonderis

In the paper, we define some classes of sequents of the propositional intuitionistic logic. These are classes of primarily and α-primarily reducible sequents. Then we show how derivability of these sequents in a propositional intuitionistic logic sequent calculus LJ0 can be checked by means of a propositional classical logic sequent calculus LK0.

10.29007/p1fd ◽  
2018 ◽  
Author(s):  
Ozan Kahramanogullari

The deep inference presentation of multiplicative exponential linear logic (MELL) benefits from a rich combinatoric analysis with many more proofs in comparison to its sequent calculus presentation. In the deep inference setting, all the sequent calculus proofs are preserved. Moreover, many other proofs become available, and some of these proofs are much shorter. However, proof search in deep inference is subject to a greater nondeterminism, and this nondeterminism constitutes a bottleneck for applications. To this end, we address the problem of reducing nondeterminism in MELL by refining and extending our technique that has been previously applied to multiplicative linear logic and classical logic. We show that, besides the nondeterminism in commutative contexts, the nondeterminism in exponential contexts can be reduced in a proof theoretically clean manner. The method conserves the exponential speed-up in proof construction due to deep inference, exemplified by Statman tautologies. We validate the improvement in accessing the shorter proofs by experiments with our implementations.


2018 ◽  
Vol 29 (8) ◽  
pp. 1177-1216
Author(s):  
CHUCK LIANG

This article presents a unified logic that combines classical logic, intuitionistic logic and affine linear logic (restricting contraction but not weakening). We show that this unification can be achieved semantically, syntactically and in the computational interpretation of proofs. It extends our previous work in combining classical and intuitionistic logics. Compared to linear logic, classical fragments of proofs are better isolated from non-classical fragments. We define a phase semantics for this logic that naturally extends the Kripke semantics of intuitionistic logic. We present a sequent calculus with novel structural rules, which entail a more elaborate procedure for cut elimination. Computationally, this system allows affine-linear interpretations of proofs to be combined with classical interpretations, such as the λμ calculus. We show how cut elimination must respect the boundaries between classical and non-classical modes of proof that correspond to delimited control effects.


2018 ◽  
Vol 28 ◽  
Author(s):  
PAUL DOWNEN ◽  
ZENA M. ARIOLA

AbstractWe present a model of computation that heavily emphasizes the concept of duality and the interaction between opposites–production interacts with consumption. The symmetry of this framework naturally explains more complicated features of programming languages through relatively familiar concepts. For example, binding a value to a variable is dual to manipulating the flow of control in a program. By looking at the computational interpretation of the sequent calculus, we find a language that lets us speak about duality, control flow, and evaluation order in programs as first-class concepts.We begin by reviewing Gentzen's LK sequent calculus and show how the Curry–Howard isomorphism still applies to give us a different basis for expressing computation. We then illustrate how the fundamental dilemma of computation in the sequent calculus gives rise to a duality between evaluation strategies: strict languages are dual to lazy languages. Finally, we discuss how the concept of focusing, developed in the setting of proof search, is related to the idea of type safety for computation expressed in the sequent calculus. In this regard, we compare and contrast two different methods of focusing that have appeared in the literature, static and dynamic focusing, and illustrate how they are two means to the same end.


2007 ◽  
Vol 72 (4) ◽  
pp. 1204-1218 ◽  
Author(s):  
Giovanna Corsi ◽  
Gabriele Tassi

AbstractIn this paper we present two calculi for intuitionistic logic. The first one. IG, is characterized by the fact that every proof-search terminates and termination is reached without jeopardizing the subformula property. As to the second one, SIC, proof-search terminates, the subformula property is preserved and moreover proof-search is performed without any recourse to metarules, in particular there is no need to back-track. As a consequence, proof-search in the calculus SIC is accomplished by a single tree as in classical logic.


10.29007/5t86 ◽  
2018 ◽  
Author(s):  
Jesse Alama

Dialogue games are a two-player semantics for a variety of logics, including intuitionistic and classical logic. Dialogues can be viewed as a kind of analytic calculus not unlike tableaux. Can dialogue games be an effective foundation for proof search in intuitionistic logic (both first-order and propositional)? We announce Kuno, an automated theorem prover for intuitionistic first-order logic based on dialogue games.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 385
Author(s):  
Hyeonseung Im

A double negation translation (DNT) embeds classical logic into intuitionistic logic. Such translations correspond to continuation passing style (CPS) transformations in programming languages via the Curry-Howard isomorphism. A selective CPS transformation uses a type and effect system to selectively translate only nontrivial expressions possibly with computational effects into CPS functions. In this paper, we review the conventional call-by-value (CBV) CPS transformation and its corresponding DNT, and provide a logical account of a CBV selective CPS transformation by defining a selective DNT via the Curry-Howard isomorphism. By using an annotated proof system derived from the corresponding type and effect system, our selective DNT translates classical proofs into equivalent intuitionistic proofs, which are smaller than those obtained by the usual DNTs. We believe that our work can serve as a reference point for further study on the Curry-Howard isomorphism between CPS transformations and DNTs.


2008 ◽  
Vol DMTCS Proceedings vol. AI,... (Proceedings) ◽  
Author(s):  
Zofia Kostrzycka

International audience In this paper we focus on the intuitionistic propositional logic with one propositional variable. More precisely we consider the standard fragment $\{ \to ,\vee ,\bot \}$ of this logic and compute the proportion of tautologies among all formulas. It turns out that this proportion is different from the analog one in the classical logic case.


Sign in / Sign up

Export Citation Format

Share Document