scholarly journals On density of truth of the intuitionistic logic in one variable

2008 ◽  
Vol DMTCS Proceedings vol. AI,... (Proceedings) ◽  
Author(s):  
Zofia Kostrzycka

International audience In this paper we focus on the intuitionistic propositional logic with one propositional variable. More precisely we consider the standard fragment $\{ \to ,\vee ,\bot \}$ of this logic and compute the proportion of tautologies among all formulas. It turns out that this proportion is different from the analog one in the classical logic case.

1970 ◽  
Vol 35 (3) ◽  
pp. 431-437 ◽  
Author(s):  
Dov M. Gabbay

The intuitionistic propositional logic I has the following disjunction property This property does not characterize intuitionistic logic. For example Kreisel and Putnam [5] showed that the extension of I with the axiomhas the disjunction property. Another known system with this propery is due to Scott [5], and is obtained by adding to I the following axiom:In the present paper we shall prove, using methods originally introduced by Segerberg [10], that the Kreisel-Putnam logic is decidable. In fact we shall show that it has the finite model property, and since it is finitely axiomatizable, it is decidable by [4]. The decidability of Scott's system was proved by J. G. Anderson in his thesis in 1966.


1971 ◽  
Vol 36 (1) ◽  
pp. 15-20 ◽  
Author(s):  
Dean P. McCullough

In classical propositional logic it is well known that {7, ⊃ } is a functionally complete set with respect to a two-valued truth function modeling. I.e. all definable logical connectives are definable from 7 and ⊃. Other modelings of classical type propositional logics may have different functionally complete sets; for example, multivalued truth function modelings.This paper examines the question of a functionally complete set of logical connectives for intuitionistic propositional logic with respect to S. Kripke's modeling for intuitionistic logic.


1998 ◽  
Vol 63 (1) ◽  
pp. 269-300 ◽  
Author(s):  
Tomasz Połacik

AbstractWe study the monadic fragment of second order intuitionistic propositional logic in the language containing the standard propositional connectives and propositional quantifiers. It is proved that under the topological interpretation over any dense-in-itself metric space, the considered fragment collapses to Heyting calculus. Moreover, we prove that the topological interpretation over any dense-in-itself metric space of fragment in question coincides with the so-called Pitts' interpretation. We also prove that all the nonstandard propositional operators of the form q ↦ ∃p (q ↔ F(p)), where F is an arbitrary monadic formula of the variable p, are definable in the language of Heyting calculus under the topological interpretation of intuitionistic logic over sufficiently regular spaces.


2016 ◽  
Vol 45 (1) ◽  
Author(s):  
Mirjana Ilić

A natural deduction system NI, for the full propositional intuitionistic logic, is proposed. The operational rules of NI are obtained by the translation from Gentzen’s calculus LJ and the normalization is proved, via translations from sequent calculus derivations to natural deduction derivations and back.


2018 ◽  
Vol 83 (04) ◽  
pp. 1680-1682
Author(s):  
ROY DYCKHOFF

AbstractWe present a much-shortened proof of a major result (originally due to Vorob’ev) about intuitionistic propositional logic: in essence, a correction of our 1992 article, avoiding several unnecessary definitions.


2009 ◽  
Vol 19 (1) ◽  
pp. 17-26 ◽  
Author(s):  
HAYO THIELECKE

AbstractWe combine ideas from types for continuations, effect systems and monads in a very simple setting by defining a version of classical propositional logic in which double-negation elimination is combined with a modality. The modality corresponds to control effects, and it includes a form of effect masking. Erasing the modality from formulas gives classical logic. On the other hand, the logic is conservative over intuitionistic logic.


Author(s):  
Grigory Olkhovikov ◽  
Guillermo Badia

Abstract In the style of Lindström’s theorem for classical first-order logic, this article characterizes propositional bi-intuitionistic logic as the maximal (with respect to expressive power) abstract logic satisfying a certain form of compactness, the Tarski union property and preservation under bi-asimulations. Since bi-intuitionistic logic introduces new complexities in the intuitionistic setting by adding the analogue of a backwards looking modality, the present paper constitutes a non-trivial modification of the previous work done by the authors for intuitionistic logic (Badia and Olkhovikov, 2020, Notre Dame Journal of Formal Logic, 61, 11–30).


2019 ◽  
Vol 84 (02) ◽  
pp. 439-451
Author(s):  
RAJEEV GORÉ ◽  
JIMMY THOMSON

AbstractWe show that the polynomial translation of the classical propositional normal modal logic S4 into the intuitionistic propositional logic Int from Fernández is incorrect. We give a modified translation and prove its correctness, and provide implementations of both translations to allow others to test our results.


2012 ◽  
Vol 18 ◽  
pp. 273-291
Author(s):  
М. Крахт

In this paper I propose a particular algorithm by means of which humans come to understand the meaning of a logical formula. This algorithm shows why it is that some formulae are intuitively easy to understand while others border on the impossible. It also shows that the natural propositional logic is intuitionistic logic, not classical logic.


Sign in / Sign up

Export Citation Format

Share Document