scholarly journals Convolutions of generalized measures

2009 ◽  
Vol 50 ◽  
Author(s):  
Kazimieras Padvelskis ◽  
Algimantas Bikelis

The convolutions of probability distributions of independent random variables are analysed in this paper.

2015 ◽  
Vol 25 (5) ◽  
Author(s):  
Aleksey D. Yashunsky

AbstractTransformations of independent random variables over a finite field by read-once formulas are considered. Subsets of probability distributions that are preserved by read-once transformations are constructed. Also we construct a family of distributions that may be arbitrarily closely approximated by a read-once combination of independent identically distributed random variables, whose distributions have no zero components.


2011 ◽  
Vol 52 ◽  
pp. 353-358
Author(s):  
Algimantas Bikelis ◽  
Juozas Augutis ◽  
Kazimieras Padvelskis

We consider the formal asymptotic expansion of probability distribution of the sums of independent random variables. The approximation was made by using infinitely divisible probability distributions.  


Author(s):  
Munteanu Bogdan Gheorghe

Based on the Weibull-G Power probability distribution family, we have proposed a new family of probability distributions, named by us the Max Weibull-G power series distributions, which may be applied in order to solve some reliability problems. This implies the fact that the Max Weibull-G power series is the distribution of a random variable max (X1 ,X2 ,...XN) where X1 ,X2 ,... are Weibull-G distributed independent random variables and N is a natural random variable the distribution of which belongs to the family of power series distribution. The main characteristics and properties of this distribution are analyzed.


2021 ◽  
Vol 31 (3) ◽  
pp. 223-230
Author(s):  
Alexey D. Yashunsky

Abstract We consider the transformations of random variables over a finite associative ring by the addition and multiplication operations. For arbitrary finite rings, we construct families of distribution algebras, which are sets of distributions closed over sums and products of independent random variables.


2020 ◽  
pp. 9-13
Author(s):  
A. V. Lapko ◽  
V. A. Lapko

An original technique has been justified for the fast bandwidths selection of kernel functions in a nonparametric estimate of the multidimensional probability density of the Rosenblatt–Parzen type. The proposed method makes it possible to significantly increase the computational efficiency of the optimization procedure for kernel probability density estimates in the conditions of large-volume statistical data in comparison with traditional approaches. The basis of the proposed approach is the analysis of the optimal parameter formula for the bandwidths of a multidimensional kernel probability density estimate. Dependencies between the nonlinear functional on the probability density and its derivatives up to the second order inclusive of the antikurtosis coefficients of random variables are found. The bandwidths for each random variable are represented as the product of an undefined parameter and their mean square deviation. The influence of the error in restoring the established functional dependencies on the approximation properties of the kernel probability density estimation is determined. The obtained results are implemented as a method of synthesis and analysis of a fast bandwidths selection of the kernel estimation of the two-dimensional probability density of independent random variables. This method uses data on the quantitative characteristics of a family of lognormal distribution laws.


Sign in / Sign up

Export Citation Format

Share Document