scholarly journals Prediction of actual limit stresses in a thin-walled pipe loaded with internal pressure and axial tension

Author(s):  
Halyna Kozbur ◽  
Oleh Shkodzinsky ◽  
Oleh Yasniy ◽  
Ihor Kozbur ◽  
Roman Hrom'yak

If a thin-walled pipe loaded with internal pressure and tension allows the appearance of plastic trains, then the uniform plastic stability loss with the emergence of a local plastic deformation zone is considered the limit state, the corresponding stresses are considered as the limit. Correct prediction of the stress-strain state at the moment of strain localization requires taking into account the actual size of the loaded pipe and the calculation of true stresses. The article proposes the implementation of the method of predicting the limit values of true stresses that appear in the pipe at different ratios of internal pressure and axial tension. The physical and mechanical properties of the material, the type of stress state and the change in the actual dimensions of the loaded element are taken into account.

Author(s):  
Halyna Kozbur ◽  
Oleh Shkodzinsky ◽  
Lesia Dmytrotsa

If a thin-walled pipe loaded with internal pressure and tension allows the appearance of plastic strains takes place, then the uniform plastic stability loss with the emergence of a local plastic deformation zone is considered the limit state, the corresponding stresses are considered as the limit ones. Correct prediction of the stress-strain state at the moment of strain localization requires taking into account the actual size of the loaded pipe and the calculation of true stresses. The article proposes the implementation of the method of predicting the limit values of true stresses that appear in the pipe at different ratios of internal pressure and axial tension. The physical and mechanical properties of the material, the type of stress state and the change in the actual dimensions of the loaded pipe are taken into account. For two grades of steels (carbon steel 45 and alloy steel 10MnН2MoV), an increase in the calculated strength threshold is shown with an insignificant additional load of a pipe loaded with pressure and axial tension. Analysis of the results showed that it is possible to establish a balance between the actual geometry of the element and the load, which will solve the problem of finding the optimal ratio of «weight-strength», important for practical applications in aircraft, rocket and mechanical engineering. The proposed method for finding the limiting values of actual stresses makes it possible to calculate a realistic safety factor and make improved engineering solutions at the design and operation stages of structural elements; to increase the efficiency and safety of using pipeline and shell-type saving systems.


Author(s):  
Виктор Миронович Варшицкий ◽  
Евгений Павлович Студёнов ◽  
Олег Александрович Козырев ◽  
Эльдар Намикович Фигаров

Рассмотрена задача упругопластического деформирования тонкостенной трубы при комбинированном нагружении изгибающим моментом, осевой силой и внутренним давлением. Решение задачи осуществлено по разработанной методике с помощью математического пакета Matcad численным методом, основанным на деформационной теории пластичности и безмоментной теории оболочек. Для упрощения решения предложено сведение двумерной задачи к одномерной задаче о деформировании балки, материал которой имеет различные диаграммы деформирования при сжатии и растяжении в осевом направлении. Проведено сравнение с результатами численного решения двумерной задачи методом конечных элементов в упругопластической постановке. Результаты расчета по инженерной методике совпадают с точным решением с точностью, необходимой для практического применения. Полученные результаты упругопластического решения для изгибающего момента в сечении трубопровода при комбинированном нагружении позволяют уточнить известное критериальное соотношение прочности сечения трубопровода с кольцевым дефектом в сторону снижения перебраковки. Применение разработанной методики позволяет ранжировать участки трубопровода с непроектным изгибом по степени близости к предельному состоянию при комбинированном нагружении изгибающим моментом, продольным усилием и внутренним давлением. The problem of elastic plastic deformation of a thin-walled pipe under co-binned loading by bending moment, axial force and internal pressure is considered. The problem is solved by the developed method using the Matcad mathematical package by a numerical method based on the deformation theory of plasticity and the momentless theory of shells. To simplify the solution of the problem, it is proposed to reduce a twodimensional problem to a one-dimensional problem about beam deformation, the material of which has different deformation diagrams under compression and tension in the axial direction. Comparison with the results of numerical solution of the two-dimensional problem with the finite element method in the elastic plastic formulation is carried out. The obtained results of the elastic-plastic solution for the bending moment in the pipeline section under combined loading make it possible to clarify criterion ratio of the strength of the pipeline section with an annular defect in the direction of reducing the rejection. Application of the developed approach allows to rank pipeline sections with non-design bending in the steppe close to the limit state under combined loading of the pipeline with bending moment, longitudinal force and internal pressure.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
R. Karimi ◽  
M. Shariati

Abstract This paper investigates ratcheting behavior of SS316 L thin-walled steel pipes subjected to cyclic internal pressure experimentally and numerically. Numerical simulations were performed using abaqus software, and nonlinear isotropic/kinematic hardening model. According to experimentations, it was found that the ratcheting strain is only significant in the hoop direction of a pipe subjected to cyclic internal pressure. The effects of pressure amplitude and mean pressure on ratcheting behavior of thin walled pipe in hoop direction were studied experimentally and numerically, and it was observed that increasing the pressure amplitude and mean pressure increased the percentage of ratcheting strain. Another important point about the results was the dominance of pressure amplitude on mean pressure. The results showed that at higher mean pressures the effect of pressure amplitude on increasing the percentage of ratcheting strain was greater. Finally, the experimental and numerical results were in good agreement.


2020 ◽  
pp. 60-73
Author(s):  
Yu V Nemirovskii ◽  
S V Tikhonov

The work considers rods with a constant cross-section. The deformation law of each layer of the rod is adopted as an approximation by a polynomial of the second order. The method of determining the coefficients of the indicated polynomial and the limit deformations under compression and tension of the material of each layer is described with the presence of three traditional characteristics: modulus of elasticity, limit stresses at compression and tension. On the basis of deformation diagrams of the concrete grades B10, B30, B50 under tension and compression, these coefficients are determined by the method of least squares. The deformation diagrams of these concrete grades are compared on the basis of the approximations obtained by the limit values and the method of least squares, and it is found that these diagrams approximate quite well the real deformation diagrams at deformations close to the limit. The main problem in this work is to determine if the rod is able withstand the applied loads, before intensive cracking processes in concrete. So as a criterion of the conditional limit state this work adopts the maximum permissible deformation value under tension or compression corresponding to the points of transition to a falling branch on the deformation diagram level in one or more layers of the rod. The Kirchhoff-Lyav classical kinematic hypotheses are assumed to be valid for the rod deformation. The cases of statically determinable and statically indeterminable problems of bend of the rod are considered. It is shown that in the case of statically determinable loadings, the general solution of the problem comes to solving a system of three nonlinear algebraic equations which roots can be obtained with the necessary accuracy using the well-developed methods of computational mathematics. The general solution of the problem for statically indeterminable problems is reduced to obtaining a solution to a system of three nonlinear differential equations for three functions - deformation and curvatures. The Bubnov-Galerkin method is used to approximate the solution of this equation on the segment along the length of the rod, and specific examples of its application to the Maple system of symbolic calculations are considered.


1971 ◽  
Vol 6 (4) ◽  
pp. 273-278 ◽  
Author(s):  
H F Muensterer ◽  
F P J Rimrott

The propagation of plastic zones in a thin-walled sandwich-type cylinder has been analysed theoretically. Boundary conditions are clamped-clamped at both ends, i.e. no rotation is permitted. The material was assumed to behave isotropically and to obey the yieid criterion of Huber-Hencky-von Mises. Deformation was computed on the assumption that the vector of rate of strain was normal to the plastic-interaction curve. The predicted result was verified experimentally. Four specimens were built by lamination of a hexcell core between two concentric cylinders. In the two mild-steel specimens, the initial stage of plastic flow conformed well with the prediction. This proved that plastic flow is not initiated at the mid-position between the end constraints. In two aluminium specimens, this phenomenon of incipient plastic flow could not be observed owing to the absence of a pronounced yield point. The overall agreement was, however, satisfactory.


Sign in / Sign up

Export Citation Format

Share Document