Elastic-plastic bending of the pipeline under combined loading

Author(s):  
Виктор Миронович Варшицкий ◽  
Евгений Павлович Студёнов ◽  
Олег Александрович Козырев ◽  
Эльдар Намикович Фигаров

Рассмотрена задача упругопластического деформирования тонкостенной трубы при комбинированном нагружении изгибающим моментом, осевой силой и внутренним давлением. Решение задачи осуществлено по разработанной методике с помощью математического пакета Matcad численным методом, основанным на деформационной теории пластичности и безмоментной теории оболочек. Для упрощения решения предложено сведение двумерной задачи к одномерной задаче о деформировании балки, материал которой имеет различные диаграммы деформирования при сжатии и растяжении в осевом направлении. Проведено сравнение с результатами численного решения двумерной задачи методом конечных элементов в упругопластической постановке. Результаты расчета по инженерной методике совпадают с точным решением с точностью, необходимой для практического применения. Полученные результаты упругопластического решения для изгибающего момента в сечении трубопровода при комбинированном нагружении позволяют уточнить известное критериальное соотношение прочности сечения трубопровода с кольцевым дефектом в сторону снижения перебраковки. Применение разработанной методики позволяет ранжировать участки трубопровода с непроектным изгибом по степени близости к предельному состоянию при комбинированном нагружении изгибающим моментом, продольным усилием и внутренним давлением. The problem of elastic plastic deformation of a thin-walled pipe under co-binned loading by bending moment, axial force and internal pressure is considered. The problem is solved by the developed method using the Matcad mathematical package by a numerical method based on the deformation theory of plasticity and the momentless theory of shells. To simplify the solution of the problem, it is proposed to reduce a twodimensional problem to a one-dimensional problem about beam deformation, the material of which has different deformation diagrams under compression and tension in the axial direction. Comparison with the results of numerical solution of the two-dimensional problem with the finite element method in the elastic plastic formulation is carried out. The obtained results of the elastic-plastic solution for the bending moment in the pipeline section under combined loading make it possible to clarify criterion ratio of the strength of the pipeline section with an annular defect in the direction of reducing the rejection. Application of the developed approach allows to rank pipeline sections with non-design bending in the steppe close to the limit state under combined loading of the pipeline with bending moment, longitudinal force and internal pressure.

Author(s):  
Ali Salehi ◽  
Armin Rahmatfam ◽  
Mohammad Zehsaz

The present study aimed to study ratcheting strains of corroded stainless steel 304LN elbow pipes subjected to internal pressure and cyclic bending moment. To this aim, spherical and cubical shapes corrosion are applied at two depths of 1 mm and 2 mm in the critical points of elbow pipe such as symmetry sites at intrados, extrados, and crown positions. Then, a Duplex 2205 stainless steel elbow pipe is considered as an alternative to studying the impact of the pipe materials, due to its high corrosion resistance and strength, toughness, and most importantly, the high fatigue strength and other mechanical properties than stainless steel 304LN. In order to perform numerical analyzes, the hardening coefficients of the materials were calculated. The results highlight a significant relationship between the destructive effects of corrosion and the depth and shape of corrosion, so that as corrosion increases, the resulting destructive effects increases as well, also, the ratcheting strains in cubic corrosions have a higher growth rate than spherical corrosions. In addition, the growth rate of the ratcheting strains in the hoop direction is much higher across the studied sample than the axial direction. The highest growth rate of hoop strain was observed at crown and the highest growth rate of axial strains occurred at intrados position. Altogether, Duplex 2205 material has a better performance than SS 304LN.


2019 ◽  
Vol 968 ◽  
pp. 200-208
Author(s):  
Mykola Soroka

The paper considers the problem of the ultimate load finding for structures made of a material with different limits of tensile strength and compression. The modulus of elasticity under tension and compression is the same. It is assumed that upon reaching the ultimate strength, the material is deformed indefinitely. The calculations use a simplified material deformation diagram — Prandtl diagrams. The limiting state of a solid rectangular section under the action of a longitudinal force and a bending moment is considered. The dependences describing the boundary of the strength of a rectangular cross section are obtained. Formulas allowing the calculation of the values of the limit forces and under the action of which the cross section passes into the plastic state are derived. Examples of the analytical calculation of the maximum load for the frame and two-hinged arch are given. An algorithm is proposed and a program for calculating arbitrary flat rod systems according to the limit state using the finite element method is compiled. The proposed algorithm does not involve the use of iterative processes, which leads to an exact calculation of the maximum load within the accepted assumptions.


Author(s):  
Halyna Kozbur ◽  
Oleh Shkodzinsky ◽  
Oleh Yasniy ◽  
Ihor Kozbur ◽  
Roman Hrom'yak

If a thin-walled pipe loaded with internal pressure and tension allows the appearance of plastic trains, then the uniform plastic stability loss with the emergence of a local plastic deformation zone is considered the limit state, the corresponding stresses are considered as the limit. Correct prediction of the stress-strain state at the moment of strain localization requires taking into account the actual size of the loaded pipe and the calculation of true stresses. The article proposes the implementation of the method of predicting the limit values of true stresses that appear in the pipe at different ratios of internal pressure and axial tension. The physical and mechanical properties of the material, the type of stress state and the change in the actual dimensions of the loaded element are taken into account.


2004 ◽  
Vol 126 (2) ◽  
pp. 179-183 ◽  
Author(s):  
Do-Jun Shim ◽  
Jae-Boong Choi ◽  
Young-Jin Kim

Failure assessment of a pipe with local wall thinning draws increasing attention in the nuclear power plant industry. Although many guidelines have been developed and are used for assessing the integrity of a wall-thinned pipeline, most of these guidelines consider only pressure loading and thus neglect bending loading. As most pipelines in nuclear power plants are subjected to internal pressure and bending moment, an assessment procedure for locally wall-thinned pipeline subjected to combined loading is urgently needed. In this paper, three-dimensional finite element (FE) analyses are carried out to simulate full-scale pipe tests conducted for various shapes of wall-thinned area under internal pressure and bending moment. Maximum moments based on ultimate tensile stress were obtained from FE results to predict the failure of the pipe. These results are compared with test results, showing good agreement. Additional finite element analyses are then performed to investigate the effect of key parameters, such as wall-thinned depth, wall-thinned angle and wall-thinned length, on maximum moment. Moreover, the effect of internal pressure on maximum moment was investigated. Change of internal pressure did not show significant effect on the maximum moment.


Author(s):  
Marina Q. Smith ◽  
Christopher J. Waldhart

Current methods for estimating the remaining strength of aging, corroded pipelines have been restricted to the capabilities of pressure based engineering models that rely on the definition of hoop stress in the pipe wall. Because in practice, pipelines are subjected to a variety of loading conditions (e.g.; axial bending from settlement and thermal stresses) that act in concert with those derived by internal pressure, a multi-year combined testing and analysis program was initiated by the Alyeska Pipeline Service Company aimed at developing computer tools for the prediction of rupture and wrinkling in corroded pipes. During the program, seventeen full-scale tests of mechanically corroded 48-inch diameter (1219-mm), X65 pipes subjected to internal pressure, axial bending, and axial compression were performed to provide data necessary for the verification of analytical models and failure prediction models. While all of the tests were designed to produce rupture, wrinkling, as defined by the occurrence of a limit moment during the application of bending loads, was produced in eleven of the tests either prior to or instead of rupture. Loading of the pipe was intended to simulate that which would be observed by a pipe in-service and included both load control and displacement control of the applied bending load, and in some tests, intended to define the amount of additional pressure required to cause burst after wrinkling was produced. Results of the tests showed that two different failure modes are produced depending on whether the bending moment is transmitted to the pipe as a fixed load or a fixed displacement, and consequently, the burst capacity of the corroded pipe may not be compromised by the presence of axial loads. This paper discusses the tests performed, including a description of the load schedule and corrosion geometries, and key results of the tests that were used in the development of a new strain-based burst prediction procedure for corroded pipes subjected to combined loads.


Author(s):  
Sergii Ageiev ◽  
Igor Orynyak ◽  
Sergii Radchenko ◽  
Maksym Zarazovskii

Based on the previous limit load analytical modeling for cracked thin-walled pipe [1] the limit load model for thick-walled pipe had developed. There are some additional peculiarities included in proposed model. First, the radial stresses distribution and their accounting for the Tresca’s criterion. Second, the crack location and related to it the interaction of hoop stress (due to the inner pressure) and axial one (caused by local bending moment) in the limit state. Third, hoop stress redistribution with possibility of plastic hinge forming in the zone, which is opposite to the crack zone. Forth, an analysis of derived easy to use analytical formulas by comparing with results of full-scale burst test.


2017 ◽  
Vol 139 (2) ◽  
Author(s):  
Shahin Shadlou ◽  
Farid Taheri

ASTM PCC-2 standard provides a series of equations for establishing the composite repair's thickness required for bringing the capacity of dented/damaged pipes, to their original design state. However, the accuracy of the equations' predictions for pipes subjected to various combined loadings has not been fully explored. Moreover, the influence of the state of a pipe/composite wrap (CW) interface (i.e., whether perfectly intact or not intact), in reference to the predictions of the ASTM equations, has not been studied either. In consideration of the above-mentioned issues, a comprehensive finite-element (FE) study is conducted, using the cohesive zone methodology (CZM) to simulate the response of pipes repaired with composite wraps, under single and various combined loading conditions. Moreover, the influence of perfect (or tied) and imperfect (unintact) pipe/CW interface on the load-bearing capacity of repaired pipes is systematically investigated. Finally, the effects of composite repairs' thickness and length on their efficacy are also investigated. The results show that, although the pipe/CW interface state does not have any noticeable effect when the pipe is subjected to a combined loading state of bending moment and internal pressure, it plays a crucial role when the pipe is under a combined internal pressure and uniaxial loading condition. Furthermore, the predicted values calculated according to the ASME standard are compared with the finite-element results, demonstrating that ASTM-based predictions do not provide accurate results when a repaired pipe is subjected to an axial loading condition.


Author(s):  
D. J. Shim ◽  
J. B. Choi ◽  
Y. J. Kim ◽  
J. W. Kim ◽  
C. Y. Park

Failure of a pipeline due to local wall thinning is getting more attention in the nuclear power plant industry. Although guidelines such as ANSI/ASME B31G are still useful for assessing the integrity of a wall thinned pipeline, there are some limitations in these guidelines. For instance, these guidelines consider only pressure loading and thus neglect bending loading. However, most pipelines in nuclear power plants are subjected to internal pressure and bending moment due to dead-weight loads and seismic loads. Therefore, an assessment procedure for locally wall thinned pipeline subjected to combined loading is needed. In this paper, three-dimensional finite element (FE) analyses were performed to simulate full-scale pipe tests conducted for various shapes of wall thinned area under internal pressure and bending moment. Maximum moments based on ultimate stress (σu) were obtained from FE results to predict the failure of the pipe. These results were compared with test results, which showed good agreement. Additional finite element analyses were performed to investigate the effect of key parameters, such as wall thinned depth, wall thinned angle and wall thinned length, on maximum moment. Also, the effect of internal pressure on maximum moment was investigated. Change of internal pressure did not show significant effect oll the maximum moment.


Author(s):  
Shulong Liu ◽  
Alastair Walker ◽  
Philip Cooper

Offshore pipeline systems commonly incorporate induction-heating formed bends along flowlines and in pipeline end termination assemblies and spools. In deepwater locations, the pipeline and bends are subjected to various combinations of external pressure, internal pressure, bending moment and temperature changes, during installation, and operation. Although there is a history of research into the limiting loads and failure modes of such bends and pipelines systems there is, as yet, no comprehensive guidance to enable the calculation of the maximum capacity under combined bending and external pressure loading. Conservative guidance is presented in DNV OS-F101 (2007) [1] that proposes increasing the pipe wall thickness to reduce the effect of external pressure collapse effects thus enabling bending formulations relevant to straight pipe to be used. This proposed approach leads to unfeasibly large wall thickness requirements in very deepwater applications. There is therefore a requirement for a method to design deepwater bends for installation and operation conditions with levels of safety comparable with those used in the design of straight sections of pipelines that does not depend on the requirement to increase the wall thickness to the extent proposed in the current DNV guidance. In this study, a nonlinear FE method using ABAQUS is proposed to evaluate the ultimate capacities of induction-heating formed bends. The method takes into account the combined effects of non-linear material properties, initial ovality, wall thinning/thickening, external or internal pressure, internal CRA cladding and temperature change on the ultimate moment capacity of the bend. The numerical model is validated by comparison with available published results. The method developed here is based on the limit state design formulations in the current DNV OS-F101 guidance.


Sign in / Sign up

Export Citation Format

Share Document