scholarly journals Analysis of the results of a computational experiment to restore the discontinuous functions of two variables using projections

Author(s):  
Oleg Lytvyn ◽  
Oleg Lytvyn ◽  
Oleksandra Lytvyn

This article presents the main statements of the method of approximation of discontinuous functions of two variables, describing an image of the surface of a 2D body or an image of the internal structure of a 3D body in a certain plane, using projections that come from a computer tomograph. The method is based on the use of discontinuous splines of two variables and finite Fourier sums, in which the Fourier coefficients are found using projection data. The method is based on the following idea: an approximated discontinuous function is replaced by the sum of two functions – a discontinuous spline and a continuous or differentiable function. A method is proposed for constructing a spline function, which has on the indicated lines the same discontinuities of the first kind as the approximated discontinuous function, and a method for finding the Fourier coefficients of the indicated continuous or differentiable function. That is, the difference between the function being approximated and the specified discontinuous spline is a function that can be approximated by finite Fourier sums without the Gibbs phenomenon. In the numerical experiment, it was assumed that the approximated function has discontinuities of the first kind on a given system of circles and ellipses nested into each other. The analysis of the calculation results showed their correspondence to the theoretical statements of the work. The proposed method makes it possible to obtain a given approximation accuracy with a smaller number of projections, that is, with less irradiation.

Author(s):  
V. Mezhuyev ◽  
O. M. Lytvyn ◽  
I. Pershyna ◽  
O. Nechuiviter

The paper develops a method for approximation of the discontinuous functions of two variables by discontinuous interlination splines using arbitrary triangular elements. Experimental data are one-sided traces of a function given along a system of lines (such data are commonly used in remote methods, in particular in tomography). The paper also proposes a method for approximating the discontinuous functions of two variables taking into account triangular elements having one curved side. The proposed methods improve approximation of the discontinuous functions, allowing an application to complex domains of definition and avoiding the Gibbs phenomenon.


2003 ◽  
Vol 10 (3) ◽  
pp. 401-410
Author(s):  
M. S. Agranovich ◽  
B. A. Amosov

Abstract We consider a general elliptic formally self-adjoint problem in a bounded domain with homogeneous boundary conditions under the assumption that the boundary and coefficients are infinitely smooth. The operator in 𝐿2(Ω) corresponding to this problem has an orthonormal basis {𝑢𝑙} of eigenfunctions, which are infinitely smooth in . However, the system {𝑢𝑙} is not a basis in Sobolev spaces 𝐻𝑡 (Ω) of high order. We note and discuss the following possibility: for an arbitrarily large 𝑡, for each function 𝑢 ∈ 𝐻𝑡 (Ω) one can explicitly construct a function 𝑢0 ∈ 𝐻𝑡 (Ω) such that the Fourier series of the difference 𝑢 – 𝑢0 in the functions 𝑢𝑙 converges to this difference in 𝐻𝑡 (Ω). Moreover, the function 𝑢(𝑥) is viewed as a solution of the corresponding nonhomogeneous elliptic problem and is not assumed to be known a priori; only the right-hand sides of the elliptic equation and the boundary conditions for 𝑢 are assumed to be given. These data are also sufficient for the computation of the Fourier coefficients of 𝑢 – 𝑢0. The function 𝑢0 is obtained by applying some linear operator to these right-hand sides.


1914 ◽  
Vol 33 ◽  
pp. 139-142
Author(s):  
L. R. Ford

In this paper are introduced what we shall term “successive oscillation functions.” These functions are derived from functions of a real variable. The word “function” as here used has its widest meaning. We say y is a function of x in an interval of the the x-axis, if given any value of x, in the interval one or more values of y are thereby determined. The values of the function may be determined by any arbitrary law whatsoever. We shall deal with discontinuous functions; the theorems will be true for continuous functions, but will be trivial, except in the case of functions which are discontinuous and whose points of discontinuity are infinite in number. We shall assume in what follows that the values of the function lie between finite limits.


Author(s):  
P. Isaza ◽  
D. Waterman

AbstractA trigonometric series has “small gaps” if the difference of the orders of successive terms is bounded below by a number exceeding one. Wiener, Ingham and others have shown that if a function represented by such a series exhibits a certain behavior on a large enough subinterval I, this will have consequences for the behavior of the function on the whole circle group. Here we show that the assumption that f is in any one of various classes of functions of generalized bounded variation on I implies that the appropriate order condition holds for the magnitude of the Fourier coefficients. A generalized bounded variation condition coupled with a Zygmundtype condition on the modulus of continuity of the restriction of the function to I implies absolute convergence of the Fourier series.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Irene Daprà ◽  
Giambattista Scarpi

This paper presents an analytical solution of the momentum equation for the unsteady motion of fluids in circular pipes, in which the kinematic viscosity is allowed to change arbitrarily in time. Velocity and flow rate are expressed as a series expansion of Bessel and Kelvin functions of the radial variable, whereas the dependence on time is expressed as Fourierlike series. The analytical solution for the velocity is compared with the direct numerical solution of the momentum equation in a particular case, verifying that the difference between analytical and numerical values of axial velocity is less than 1%, except near the discontinuity of the applied pressure gradient, where the typical behavior due to the Gibbs phenomenon is to be noted.


2013 ◽  
Vol 5 (1) ◽  
pp. 102-109
Author(s):  
O.O. Novikov ◽  
O.G. Rovenska

We obtain asymptotic equalities for upper bounds of the deviations of the right-angled Fourier sums taken over classes of periodical functions of two variables of high smoothness. These equalities in corresponding cases guarantee the solvability of the Kolmogorov–Nikol’skii problem for the right-angled Fourier sums on the specified classes of functions.


Sign in / Sign up

Export Citation Format

Share Document