scholarly journals SECOND ANOXIA-REOXYGENATION DOES NOT CAUSE THE APOPTOTIC CELL DEATH OF NEONATAL CARDIOMYOCYTES: POSSIBLE ROLE OF CHANGES OF mRNA EXPRESSION OF CYTOPROTECTIVE GENES

2009 ◽  
Vol 55 (1) ◽  
pp. 19-26
Author(s):  
O.V. Surova ◽  
◽  
V.E. Dosenko ◽  
V.S. Nagibin ◽  
L.V. Tumanovskaya ◽  
...  

The cells death and genes expression in neonatal cardiomyocytes culture at two anoxia-reoxygenation modeling were investigated. The primary culture of neonatal cardiomyocytes was under­gone 30 min of anoxia followed by 24 h (A-R1) and the second anoxia-reoxygenation – 30 min and 60 min respectively (A-R2). The percentages of living, necrotic, apoptotic and autophagic cells were determined by staining with bis-benzimide, propidium iodide and monodansylcadaverine. Anoxia-reoxygenation sig­nificantly influenced the ratio of living, necrotic, apoptotic and autophagic cells both at its first A-R1 and second A-R2 epi­sodes. It was shown that the main mechanism of cell death after the both periods of anoxia-reoxygenation is necrosis. The changes of mRNA levels of genes of heat shock proteins HSP70 and HSP90, antiapoptotic protein Bcl2 and key regulator of au-tophagy FRAP in cardiomyocytes culture were established. The data obtained allow to make suggestion that in 24 h after the first episode of anoxia-reoxygenation A-R1 the overexpression of heat shock proteins starts the cascade of reactions that causes the necrotic cell death prevalent and the blocking of apoptotic program at second anoxia-reoxygenation A-R2.

2000 ◽  
Vol 12 (11) ◽  
pp. 1539-1546 ◽  
Author(s):  
Sreyashi Basu ◽  
Robert J. Binder ◽  
Ryuichiro Suto ◽  
Kirstin M. Anderson ◽  
Pramod K. Srivastava

2001 ◽  
Vol 286 (3) ◽  
pp. 433-442 ◽  
Author(s):  
Carmen Garrido ◽  
Sandeep Gurbuxani ◽  
Luigi Ravagnan ◽  
Guido Kroemer

2015 ◽  
Vol 412 (1-2) ◽  
pp. 19-26 ◽  
Author(s):  
Lourdes Franco ◽  
Jorge Terrinca ◽  
Ana B. Rodríguez ◽  
Javier Espino ◽  
José A. Pariente

2003 ◽  
Vol 23 (16) ◽  
pp. 5882-5895 ◽  
Author(s):  
Sachiye Inouye ◽  
Kensaku Katsuki ◽  
Hanae Izu ◽  
Mitsuaki Fujimoto ◽  
Kazuma Sugahara ◽  
...  

ABSTRACT Heat shock response, which is characterized by the induction of a set of heat shock proteins, is essential for induced thermotolerance and is regulated by heat shock transcription factors (HSFs). Curiously, HSF1 is essential for heat shock response in mammals, whereas in avian HSF3, an avian-specific factor is required for the burst activation of heat shock genes. Amino acid sequences of chicken HSF1 are highly conserved with human HSF1, but those of HSF3 diverge significantly. Here, we demonstrated that chicken HSF1 lost the ability to activate heat shock genes through the amino-terminal domain containing an alanine-rich sequence and a DNA-binding domain. Surprisingly, chicken and human HSF1 but not HSF3 possess a novel function that protects against a single exposure to mild heat shock, which is not mediated through the activation of heat shock genes. Overexpression of HSF1 mutants that could not bind to DNA did not restore the susceptibility to cell death in HSF1-null cells, suggesting that the new protective role of HSF1 is mediated through regulation of unknown target genes other than heat shock genes. These results uncover a novel role of vertebrate HSF1, which has been masked underthe roles of heat shock proteins.


Sign in / Sign up

Export Citation Format

Share Document