scholarly journals Thermostressed State of the Lock Joint of Turbine Rotor Blades of the First Stage of К-500-240 Steam Turbine Medium Pressure Cylinder

2019 ◽  
Vol 22 (3) ◽  
pp. 36-43
Author(s):  
Ihor Palkov ◽  
◽  
Mykola Shulzhenko ◽  
2012 ◽  
Vol 54 (3) ◽  
pp. 157-162
Author(s):  
Branko Staniša ◽  
Zdravko Schauperl ◽  
Mateja Šnajdar

Vestnik MEI ◽  
2018 ◽  
Vol 6 (6) ◽  
pp. 27-32
Author(s):  
Denis V. Nasteka ◽  
◽  
Aleksandra I. Lebedeva ◽  

2021 ◽  
Vol 15 (4) ◽  
pp. 462-466
Author(s):  
Marko Katinić ◽  
Marko Ljubičić

Damage to the rotor blade of a steam turbine is a relatively common problem and is one of the leading causes of sudden and unplanned shutdowns of a steam turbine. Therefore, the high reliability of the rotor blades is very important for the safe and economical operation of the steam turbine. To ensure high reliability, it is necessary to perform a vibration analysis of the rotor blades experimentally and in a computer environment. In this paper, a modal analysis was performed on the twisted blade of the last stage of the turbine in the Ansys software. The results of the modal analysis of the stationary rotor blade were compared with the results obtained by the bump test, which confirmed the numerical model of the blade. A modal analysis of a rotating rotor blade was performed on the same numerical model, and Campbell diagrams were plotted to determine the critical speed


2020 ◽  
Vol 23 (4) ◽  
pp. 28-37
Author(s):  
Ihor A. Palkov ◽  
◽  
Mykola H. Shulzhenko ◽  

The stress-strain state problem for the lock joint of the rotor blades of the first stage of the medium-pressure cylinder under plastic deformation is solved. When solving the problem, the theory of elastic-plastic deformations is used. The problem is solved using two different approaches to specifying plastic deformation curves. The applicability of using a simpler bilinear approximation instead of the classical multilinear one is estimated. Based on the example of solving this problem, the time required to perform the calculation with the use of the bilinear and multilinear approximations is shown. Comparison of the results obtained in the form of the distribution of plastic deformations, equivalent stresses, and contact stresses over support pads made it possible to assess the difference when the two types of approximation are used. The obtained result error value when using the bilinear approximation made it possible to draw conclusions about the applicability of this approach to the processing of plastic deformation curves for solving problems of this kind. The problem is solved using the finite element method. To objectively assess the effect of plastic deformation on the redistribution of loads in the lock joint, a finite element model is used, obtained when solving the problem of the thermally stressed state of the rotor blade lock joint. The distribution of contact stresses in the lock joint is shown. The results are compared with those obtained earlier when solving the problem of thermoelasticity. Significant differences in the level of contact stresses are noted. Results of the computational assessment of the stress-strain state of the lock joint of the rotor blades of the first stage of the medium-pressure cylinder of a steam turbine are presented, which allow characterizing the degree of relaxation and redistribution of stresses in the structure in comparison with the results obtained earlier when solving the problem of thermoelasticity. Conclusions are made about the economic viability of using the calculation methods presented.


Author(s):  
Romuald Rzadkowski ◽  
Vitaly Gnesin ◽  
Lubov Kolodyazhnaya ◽  
Ryszard Szczepanik

Presented here are the numerical calculations of the 3D transonic flow of an ideal gas through an LP steam turbine last stage with exhaust hood, taking into account blade oscillations. The approach is based on a solution to the coupled aerodynamic-structure problem for 3D flow through a turbine stage using the partially integrated method. The blade oscillations and loads acting on the blades are a part of the solution. An ideal gas flow through the stator and moving rotor blades with periodicity on the whole annulus is described by unsteady Euler conservation equations, integrated with the Godunov-Kolgan explicit monotonous finite-volume difference scheme and a moving hybrid H-H rotor blade grid. The structural analysis uses the modal approach and a 3D finite element model of a blade. The proposed algorithm allows for the calculation of turbine stages with an arbitrary pitch ratio of stator and rotor blades, taking into account unsteady-load induced blade oscillations. The pressure distribution behind the rotor blades was non-uniform on account of the exhaust hood. As a result of the fluid-structure interaction and exhaust hood induced nonsymmetrical pressure distribution behind the rotor blades, the first blade mode was no longer bending but bending-torsion.


2017 ◽  
Vol 51 (2) ◽  
pp. 256-256
Author(s):  
A. V. Belyakov ◽  
V. V. Sarantsev ◽  
A. N. Gorbachev ◽  
F. I. Panteleenko ◽  
E. L. Azarenko ◽  
...  

Wear ◽  
1995 ◽  
Vol 186-187 ◽  
pp. 395-400 ◽  
Author(s):  
B. Staniša ◽  
V. Ivušić

Sign in / Sign up

Export Citation Format

Share Document