steam turbine rotor
Recently Published Documents


TOTAL DOCUMENTS

186
(FIVE YEARS 29)

H-INDEX

11
(FIVE YEARS 3)

2021 ◽  
Vol 73 (2) ◽  
pp. 40-55
Author(s):  
Joanna FURMANEK ◽  
Janusz DOBRZAŃSKI

The article presents the results of tests of materials for steam turbine rotors with various degrees of depletion in order to determine the suitability of these components for further operation after significantly exceeding the design working time on the basis of the assessment of the microstructure condition and a set of functional properties.


Author(s):  
M Rund ◽  
J Džugan ◽  
P Konopík ◽  
M Nesládek ◽  
J Kuželka ◽  
...  

2021 ◽  
Author(s):  
Chongyu Wang ◽  
Di Zhang ◽  
Yonghui Xie

Abstract The steam turbine rotor is still the main power generation equipment. Affected by the impact of new energy on the power grid, the steam turbine needs to participate in peak load regulation, which will make turbine rotor components more prone to failure. The rotor is an important equipment of a steam turbine. Unbalance and misalignment are the normal state of rotor failure. In recent years, more and more attention has been paid to the fault detection method based on deep learning, which takes rotating machinery as the object. However, there is a lack of research on actual steam turbine rotors. In this paper, a method of rotor unbalance and parallel misalignment fault detection based on residual network is proposed, which realizes the end-to-end fault detection of rotor. Meanwhile, the method is evaluated with numerical simulation data, and the multi task detection of rotor unbalance, parallel misalignment, unbalanced parallel misalignment coupling faults (coupling fault called in this paper) is realized. The influence of signal-to-noise ratio and the number of training samples on the detection performance of neural network is discussed. The detection accuracy of unbalanced position is 93.5%, that of parallel misalignment is 99.1%. The detection accuracy for unbalance and parallel misalignment is 89.1% and 99.1%, respectively. The method can realize the direct mapping between the unbalanced, parallel misalignment, coupling fault vibration signals and the fault detection results. The method has the ability to automatically extract fault features. It overcomes the shortcoming of traditional methods that rely on signal processing experience, and has the characteristics of high precision and strong robustness.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Vital Kumar Yadav Pillala ◽  
B. V. S. S. S. Prasad ◽  
N. Sitaram ◽  
M. Mahendran ◽  
Debasish Biswas ◽  
...  

AbstractThe paper presents details of a unique experimental facility along with necessary accessories and instrumentation for testing steam turbine cascade blades in wet and nucleating steam. A steam turbine rotor tip cascade is chosen for flow investigations. Cascade inlet flow measurements show uniform conditions with dry air and steam and dry air mixture of different ratios. Exit flow surveys indicate that excellent flow periodicity is obtained. Blade surface static pressure and exit total pressure distributions are also presented with dry air and with steam and dry air mixture of different ratios as the working medium at an exit Mach number of 0.52.


Sign in / Sign up

Export Citation Format

Share Document