Study the structure and thermal properties of carboxymethylated-β-cyclodextrin inclusion complex with bifonazole

2020 ◽  
Vol 42 (4) ◽  
pp. 262-268
Author(s):  
L. Kobrina ◽  
◽  
S. Sinelnikov ◽  
V. Shtompel ◽  
D. Bandurina ◽  
...  

Recently, many technological methods of enhancing the solubility and dissolution characteristics of poorly water soluble drugs have been reported in the literature. Сyclodextrins are able to form water-soluble non-covalent inclusion complexes with many poorly soluble lipophilic drugs. The purpose of this study is to evaluate the possibility of interaction of the antifungal drug Bifonazole (BFZ) through complexation with carboxymethylated-β-cyclodextrin (КМ-β-CD). Based on the data obtained, we can conclude that the presence of KM-β-CD improves solubilization of BFZ more than 50 times. Кеуwords: cyclodextrins, solubility, poorly-water soluble drugs, bifonazole.

INDIAN DRUGS ◽  
2015 ◽  
Vol 52 (11) ◽  
pp. 19-23
Author(s):  
J Shaikh ◽  
◽  
S. V. Deshmane ◽  
R. N Purohit ◽  
K. R. Biyani

The main objective of the present study was to enhance the solubility and dissolution rate of poorly water soluble aceclofenac using its solid dispersion with β-cyclodextrin. FTIR and DSC study was carried out to find out any incompatibility. The phase solubility of drug was carried out in 1, 2, 5, and 10% of β-cyclodextrin in distilled water. Kneading method and solvent evaporation method was use to prepared solid dispersion of aceclofenac and β-cyclodextrin. Different evaluation tests like solubility study in different solvents, PXRD and in vitro dissolution study of aceclofenac- β-cyclodextrin inclusion complex were carried out. The overall finding indicated that β-cyclodextrin is a desirable water soluble carrier, that helps in increasing solubility of drug. Due to its structural feature, β-cyclodextrin forms a good inclusion complex that decreases contact angle of drug with water molecules by increasing wetting properties. Hence, it can be concluded that, β-cyclodextrin is better water soluble carrier molecule in terms of its compatibility and increasing solubility behavior of poorly water soluble drug aceclofenac.


2019 ◽  
Vol 9 (2) ◽  
pp. 574-582
Author(s):  
Stanekzai Azimullah ◽  
, Vikrant ◽  
CK Sudhakar ◽  
Pankaj Kumar ◽  
Akshay Patil ◽  
...  

Solubility is a vital factor for devloping drug delivery systems for poorly water soluble drugs. Several conventional approaches for enhancement of solubility have limited applicability, especially when the drugs are poorly water soluble. Nanosuspension technology can be used to enhance the solubilty, stability as well as the bioavailability of poorly water soluble drugs. Nanosuspensions are biphasic systems comperising of pure drug particles dispersed in an aqueous vehicle, stabilized by surfac active agents. Fabrication of nanosuspension is simple and more advantageous than other approaches. Techniques like high-pressure homogenization, wet milling, emulsification, solvent evaporation, bottom up technology and top down technology have been applicable in the fabrication of nanosuspensions. Nanosuspension delivery is possible by several routes, such as oral, pulmonary, parenteral and ocular routes. Nanosuspension not only solves solubility and bioavailability issue, but improve drug safety and efficacy. In this context, we reviewed the current techniques used to develop nanosuspensions and their recents studies application in drug delivery system. Keywords : Solubility, fabrication, Characterization, Applications, Nanosuspension.


2015 ◽  
Vol 13 (23) ◽  
pp. 6468-6473 ◽  
Author(s):  
Lucia Barbera ◽  
Giuseppe Gattuso ◽  
Franz H. Kohnke ◽  
Anna Notti ◽  
Sebastiano Pappalardo ◽  
...  

The ability of an anionic calix[4]arene amphiphile to aggregate and to solubilize, as a result, the poorly water-soluble drugs naproxen and flurbiprofen is described.


2016 ◽  
Vol 19 (2) ◽  
pp. 208 ◽  
Author(s):  
Meiyan Yang ◽  
Wei Gong ◽  
Yuli Wang ◽  
Li Shan ◽  
Ying Li ◽  
...  

The formulation development for poorly soluble drugs still remains a challenge. Supersaturating drug delivery systems (SDDS) or drug delivery systems based on supersaturating provide a promising way to improve the oral bioavailability of poorly water-soluble drugs. In supersaturable formulations, drug concentration exceeds the equilibrium solubility when exposed to gastrointestinal fluids, and the supersaturation state is maintained long enough to be absorbed, resulting in compromised bioavailability. In this article, the mechanism of generating and maintaining supersaturation and the evaluation methods of supersaturation assays are discussed. Recent advances in different drug delivery systems based on supersaturating are the focus and are discussed in detail.This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Shivarani Eesam ◽  
Jaswanth S. Bhandaru ◽  
Chandana Naliganti ◽  
Ravi Kumar Bobbala ◽  
Raghuram Rao Akkinepally

Abstract Background Increasing hydrophilicity of poorly water-soluble drugs is a major challenge in drug discovery and development. Cocrystallization is one of the techniques to enhance the hydrophilicity of such drugs. Carvedilol (CAR), a nonselective beta/alpha1 blocker, used in the treatment of mild to moderate congestive heart failure and hypertension, is classified under BCS class II with poor aqueous solubility and high permeability. Present work is an attempt to improve the solubility of CAR by preparing cocrystals using hydrochlorothiazide (HCT), a diuretic drug, as coformer. CAR-HCT (2:0.5) cocrystals were prepared by slurry conversion method and were characterized by DSC, PXRD, FTIR, Raman, and SEM analysis. The solubility, stability, and dissolution (in vitro) studies were conducted for the cocrystals. Results The formation of CAR-HCT cocrystals was confirmed based on melting point, DSC thermograms, PXRD data, FTIR and Raman spectra, and finally by SEM micrographs. The solubility of the prepared cocrystals was significantly enhanced (7.3 times), and the dissolution (in vitro) was improved by 2.7 times as compared to pure drug CAR. Further, these cocrystals were also found to be stable for 3 months (90 days). Conclusion It may be inferred that the drug–drug (CAR-HCT) cocrystallization enhances the solubility and dissolution rate of carvedilol significantly. Further, by combining HCT as coformer could well be beneficial pharmacologically too.


2016 ◽  
Vol 105 (9) ◽  
pp. 2864-2872 ◽  
Author(s):  
Sara B.E. Andersson ◽  
Caroline Alvebratt ◽  
Jan Bevernage ◽  
Damien Bonneau ◽  
Claudia da Costa Mathews ◽  
...  

2011 ◽  
Vol 403 (1-2) ◽  
pp. 162-169 ◽  
Author(s):  
Chao Wu ◽  
Zhongyan Wang ◽  
Zhuangzhi Zhi ◽  
Tongying Jiang ◽  
Jinghai Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document