scholarly journals A SYNTHESIS OF TEMPORAL VARIATIONS IN DOPPLER SPECTRA RECORDED AT A QUASI-VERTICAL INCIDENCE BY THE HF DOPPLER RADAR WITH SPACED RECEIVERS

2021 ◽  
Vol 26 (3) ◽  
pp. 211-223
Author(s):  
V. F. Pushin ◽  
◽  
L. F. Chernogor ◽  

Purpose: The ionospheric channel is widely used for the communication, radio navigation, radar, direction finding, radio astronomy, and remote radio probing systems. The radio channel parameters are characterized by nonstationarity due to the dynamic processes in the ionosphere, and therefore their study is one of the topical problems of space radio physics and earth-space radio physics of geospace. This work aims at presenting the results of synthesis of temporal variations in the Doppler spectra obtained by the Doppler probing of the ionosphere at vertical and quasi-vertical incidence. Design/methotology/approach: One of the most effective methods of ionosphere research is the Doppler sounding technique. It has a high time resolution (about 10 s), a Doppler shift resolution (0.01–0.1 Hz), and the accuracy of Doppler shift measurements (~0.01 Hz) that permits monitoring the variations in the ionospheric electron density (10–4–10–3) or the study of the ionospheric plasma motion with the speed of 0.1-1 m/s and greater. The solution of the inverse radio physical problem, consisting in determination of the ionosphere parameters, often means solving the direct radio physical problem. In the Doppler sounding technique, it belongs with the construction of variations in Doppler spectra and comparing them with the Doppler spectra measurements. Findings: For the radio wave ordinary component, three echoes being produced by three rays are observed. Influence of the geomagnetic fi eld and large horizontal gradients in the electron density of δ≥10 % give rise to complex ray structures with caustic surfaces. The ionospheric disturbances traveling along the magnetic meridian form the skip zones. The longitudinal and transverse displacement of the ray reflection point attains a few tens of kilometers along the vil. Haidary to vil. Hrakove quasi-vertical radiowave propagation path, for which the great circle range is 50 km. For the vertical incidence, the signal azimuth at the receiver coincides with the traveling ionospheric disturbance azimuth. The synthesis of temporal variations in the HF Doppler spectra has been made and compared with the temporal variations in the Doppler spectra recorded with the V. N. Karazin Kharkiv National University radar. The estimate of δ=15 % obtained confirms the existence of large horizontal gradients in electron density. Conclusions: Temporal variations in Doppler spectra and in azimuth have been calculated for the vertical and quasi-vertical incidence with allowance for large horizontal gradients of the electron density caused by traveling ionospheric disturbances. Key words: ionosphere, Doppler sounding at oblique incidence, synthesis of temporal variations in HF Doppler spectra, traveling ionospheric disturbances, electron density

2020 ◽  
Author(s):  
Chinmaya Nayak ◽  
Stephan Buchert

<p><span>This paper studies the daytime medium scale traveling ionospheric disturbances (MSTIDs) in the mid- and low-latitude ionosphere for a period of nearly half a solar cycle (2014-2019) using SWARM observations. We specifically focus on daytime MSTIDs to rule out any contribution from nighttime plasma irregularities. Fluctuations in electron density are primarily used to identify the MSTIDs. These wave like structures are independently observed in both electron density and magnetic fluctuations, although they do not always show one to one correlation. In most cases, the structures are observed by both satellite ‘A’ and ‘C’, suggesting that their zonal extent is more than 140 km. The study makes an attempt to understand and explain the magnetic conjugate nature of the MSTIDs. To have a better understanding of the dynamics of the MSTIDs, ground based GPS-TEC and ionosonde data has been used on case to case basis, wherever available. Additionally, spatio-temporal statistics of MSTID distribution is presented. </span></p>


2020 ◽  
Vol 10 ◽  
pp. 32
Author(s):  
Arthur Amaral Ferreira ◽  
Claudia Borries ◽  
Chao Xiong ◽  
Renato Alves Borges ◽  
Jens Mielich ◽  
...  

Traveling Ionospheric Disturbances (TIDs) reflect changes in the ionospheric electron density which are caused by atmospheric gravity waves. These changes in the electron density impact the functionality of different applications such as precise navigation and high-frequency geolocation. The Horizon 2020 project TechTIDE establishes a warning system for the occurrence of TIDs with the motivation to mitigate their impact on communication and navigation applications. This requires the identification of appropriate indicators for the generation of TIDs and for this purpose we investigate potential precursors for the TID occurrence. This paper presents a case study of the double main phase geomagnetic storm, starting from the night of 7th September and lasting until the end of 8th September 2017. Detrended Total Electron Content (TEC) derived from Global Navigation Satellite System (GNSS) measurements from more than 880 ground stations in Europe was used to identify the occurrence of different types of large scale traveling ionospheric disturbances (LSTIDs) propagating over the European sector. In this case study, LSTIDs were observed more frequently and with higher amplitude during periods of enhanced auroral activity, as indicated by increased electrojet index (IE) from the International Monitor for Auroral Geomagnetic Effects (IMAGE). Our investigation suggests that Joule heating due to the dissipation of Pedersen currents is the main contributor to the excitation of the observed LSTIDs. We observe that the LSTIDs are excited predominantly after strong ionospheric perturbations at high-latitudes. Ionospheric parameters including TEC gradients, the Along Arc TEC Rate (AATR) index and the Rate Of change of TEC index (ROTI) have been analysed for their suitability to serve as a precursor for LSTID occurrence in mid-latitude Europe, aiming for near real-time indication and warning of LSTID activity. The results of the presented case study suggest that the AATR index and TEC gradients are promising candidates for near real-time indication and warning of the LSTIDs occurrence in mid-latitude Europe since they have a close relation to the source mechanisms of LSTIDs during periods of increased auroral activity.


Radio Science ◽  
2008 ◽  
Vol 43 (4) ◽  
pp. n/a-n/a ◽  
Author(s):  
V. G. Galushko ◽  
A. S. Kascheev ◽  
V. V. Paznukhov ◽  
Yu. M. Yampolski ◽  
B. W. Reinisch

1967 ◽  
Vol 20 (4) ◽  
pp. 467 ◽  
Author(s):  
PL Dyson

Munro (1950) deduced from ground-based observations that traveling ionospheric disturbances (T.LD.'s) are large-scale distortions of the electron density contours, which travel through the ionosphere, and Calvert and Schmid (1964) attributed extra traces and distortions of the main echo traces, which occur near the critical frequency of topside ionograms, to refractive effects associated with large-scale irregularities. In an examination of topside and sub-peak ionograms recorded close in position and time, it was found that on a number of occasions refractive effects occurred on topside ionograms, when manifestations of T.LD.'s were observed on sub-peak ionograms (Dyson 1967b).


Sign in / Sign up

Export Citation Format

Share Document