auroral activity
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 7)

H-INDEX

23
(FIVE YEARS 1)

2021 ◽  
Vol 44 ◽  
pp. 24-27
Author(s):  
I.I. Efishov ◽  
◽  
I.I. Shagimuratov ◽  
I.E. Zakharenkova ◽  
N.Yu. Tepenitsyna ◽  
...  

We analyzed the occurrence of TEC fluctuations and an impact of auroral disturbances on the Precise Point Positioning (PPP) errors in European sector using GPS measurements of EPN network. Index AE was used as indicator of auroral activity. The fluctuation activity was evaluated by indexes ROT and ROTI. The positioning errors were determined using the GIPSY-OASIS software (http://apps.gdgps.net). The Precise Point Positioning is the processing strategy of the single receiver for GNSS observations that enables the efficient computation of the high-quality coordinates. For quiet conditions the algorithm provided for TRO1 stations daily average PPP errors less than 4-5 sm. The analysis indicated regular increasing positioning errors around MLT (22 UT) during March 2015. While raising the auroral activity it was observed increasing TEC fluctuation as well as positioning errors. In the report we discus also behavior PPP errors during super storm 17 March 2015. During storm at TRO1 the PPP errors reached more than 20 m. The increasing errors were observed on latitudes low than 52-54°N.


2020 ◽  
Vol 91 (6) ◽  
pp. 3039-3053 ◽  
Author(s):  
Carl Tape ◽  
Adam T. Ringler ◽  
Don L. Hampton

Abstract We examine three continuously recording data sets related to the aurora: all-sky camera images, three-component magnetometer data, and vertical-component, broadband seismic data as part of the EarthScope project (2014 to present). Across Alaska there are six all-sky cameras, 13 magnetometers, and >200 seismometers. The all-sky images and magnetometers have the same objective, which is to monitor space weather and improve our understanding of auroral activity, including the influence on magnetic fields in the ground. These variations in the magnetic field are also visible on seismometers, to the extent that during an auroral event, the long-period (40–800 s) waves recorded by a seismometer are magnetic field variations, not true ground motion. Although this is a problem—one that can be rectified with magnetic shielding at each seismometer site—it is also an opportunity because the present seismic array in Alaska is much broader than the coverage by magnetometers and all-sky cameras. Here we focus on three aurora events and document a direct link between aurora images in the night sky and seismometer recordings on ground. Simultaneous recordings by magnetometers provide a critical link between the sky images and the seismometer recordings. We document qualitative correlations among sky, magnetic, and seismic data. The findings suggest that the signature of auroral activity is widespread across seismometers in Alaska, implying that the seismic array could be used to enhance the spatial resolution of the existing network of all-sky cameras and magnetometers. Future efforts to improve the multisensor seismic stations in Alaska, for the purpose of monitoring seismic and auroral activity, should consider installation of all-sky cameras, installation of magnetometers, and magnetic shielding of seismic sensors.


2020 ◽  
Vol 6 (1) ◽  
pp. 35-40 ◽  
Author(s):  
Roman Boroev ◽  
Mikhail Vasiliev

In this study, we examine the relationship of the ASY-H index characterizing the partial ring current intensity with interplanetary medium parameters and auroral activity during the main phase of magnetic storms, induced by the solar wind (SW) of different types. Over the period 1979–2017, 107 magnetic storms driven by CIR and ICME (MC + Ejecta) events have been selected. We consider magnetic storms with Dstmin≤ – 50 nT. The average ASY-H index (ASYaver) during the magnetic storm main phase is shown to increase with increasing SW electric field and southward IMF Bz regardless of SW type. There is no relationship between ASYaver and SW velocity. For the CIR and ICME events, the average AE (AEaver) and Kp (Kp aver) indices have been found to correlate with ASYaver. The highest correlation coefficient between AEaver and ASYaver (r = 0.74) is observed for the magnetic storms generated by CIR events. A closer relationship between Kp aver and ASYaver (r = 0.64) is observed for the magnetic storms induced by ICME events. The ASYaver variations correlate with Dstmin. The relationship between ASYaver and the rate of storm development is weak.


2020 ◽  
Vol 6 (1) ◽  
pp. 43-50
Author(s):  
Roman Boroev ◽  
Mikhail Vasiliev

In this study, we examine the relationship of the ASY-H index characterizing the partial ring current intensity with interplanetary medium parameters and auroral activity during the main phase of magnetic storms, induced by the solar wind (SW) of different types. Over the period 1979–2017, 107 magnetic storms driven by CIR and ICME (MC + Ejecta) events have been selected. We consider magnetic storms with Dstmin≤ – 50 nT. The average ASY-H index (ASYaver) during the magnetic storm main phase is shown to increase with increasing SW electric field and southward IMF Bz regardless of SW type. There is no relationship between ASYaver and SW velocity. For the CIR and ICME events, the average AE (AEaver) and Kp (Kp aver) indices have been found to correlate with ASYaver. The highest correlation coefficient between AEaver and ASYaver (r = 0.74) is observed for the magnetic storms generated by CIR events. A closer relationship between Kp aver and ASYaver (r = 0.64) is observed for the magnetic storms induced by ICME events. The ASYaver variations correlate with Dstmin. The relationship between ASYaver and the rate of storm development is weak.


2020 ◽  
Vol 10 ◽  
pp. 32
Author(s):  
Arthur Amaral Ferreira ◽  
Claudia Borries ◽  
Chao Xiong ◽  
Renato Alves Borges ◽  
Jens Mielich ◽  
...  

Traveling Ionospheric Disturbances (TIDs) reflect changes in the ionospheric electron density which are caused by atmospheric gravity waves. These changes in the electron density impact the functionality of different applications such as precise navigation and high-frequency geolocation. The Horizon 2020 project TechTIDE establishes a warning system for the occurrence of TIDs with the motivation to mitigate their impact on communication and navigation applications. This requires the identification of appropriate indicators for the generation of TIDs and for this purpose we investigate potential precursors for the TID occurrence. This paper presents a case study of the double main phase geomagnetic storm, starting from the night of 7th September and lasting until the end of 8th September 2017. Detrended Total Electron Content (TEC) derived from Global Navigation Satellite System (GNSS) measurements from more than 880 ground stations in Europe was used to identify the occurrence of different types of large scale traveling ionospheric disturbances (LSTIDs) propagating over the European sector. In this case study, LSTIDs were observed more frequently and with higher amplitude during periods of enhanced auroral activity, as indicated by increased electrojet index (IE) from the International Monitor for Auroral Geomagnetic Effects (IMAGE). Our investigation suggests that Joule heating due to the dissipation of Pedersen currents is the main contributor to the excitation of the observed LSTIDs. We observe that the LSTIDs are excited predominantly after strong ionospheric perturbations at high-latitudes. Ionospheric parameters including TEC gradients, the Along Arc TEC Rate (AATR) index and the Rate Of change of TEC index (ROTI) have been analysed for their suitability to serve as a precursor for LSTID occurrence in mid-latitude Europe, aiming for near real-time indication and warning of LSTID activity. The results of the presented case study suggest that the AATR index and TEC gradients are promising candidates for near real-time indication and warning of the LSTIDs occurrence in mid-latitude Europe since they have a close relation to the source mechanisms of LSTIDs during periods of increased auroral activity.


2019 ◽  
Vol 124 (12) ◽  
pp. 10659-10673 ◽  
Author(s):  
Hui Wang ◽  
Hermann Lühr ◽  
Zhichao Zheng ◽  
Kedeng Zhang

2018 ◽  
Vol 54 (7) ◽  
pp. 730-737 ◽  
Author(s):  
N. G. Ptitsyna ◽  
S. N. Sokolov ◽  
V. A. Soldatov ◽  
M. I. Tyasto

2018 ◽  
Vol 18 (18) ◽  
pp. 13393-13410 ◽  
Author(s):  
Joonas Kiviranta ◽  
Kristell Pérot ◽  
Patrick Eriksson ◽  
Donal Murtagh

Abstract. Nitric oxide (NO) is produced by solar photolysis and auroral activity in the upper mesosphere and lower thermosphere region and can, via transport processes, eventually impact the ozone layer in the stratosphere. This work uses measurements of NO taken between 2004 and 2016 by the Odin sub-millimeter radiometer (SMR) to build an empirical model that links the prevailing solar and auroral conditions with the measured number density of NO. The measurement data are averaged daily and sorted into altitude and magnetic latitude bins. For each bin, a multivariate linear fit with five inputs, the planetary K index, solar declination, and the F10.7 cm flux, as well as two newly devised indices that take the planetary K index and the solar declination as inputs in order to take NO created on previous days into account, constitutes the link between environmental conditions and measured NO. This results in a new empirical model, SANOMA, which only requires the three indices to estimate NO between 85 and 115 km and between 80∘ S and 80∘ N in magnetic latitude. Furthermore, this work compares the NO calculated with SANOMA and an older model, NOEM, with measurements of the original SMR dataset, as well as measurements from four other instruments: ACE, MIPAS, SCIAMACHY, and SOFIE. The results suggest that SANOMA can capture roughly 31 %–70 % of the variance of the measured datasets near the magnetic poles, and between 16 % and 73 % near the magnetic equator. The corresponding values for NOEM are 12 %–38 % and 7 %–40 %, indicating that SANOMA captures more of the variance of the measured datasets than NOEM. The simulated NO for these regions was on average 20 % larger for SANOMA, and 78 % larger for NOEM, than the measured NO. Two main reasons for SANOMA outperforming NOEM are identified. Firstly, the input data (Odin SMR NO) for SANOMA span over 12 years, while the input data for NOEM from the Student Nitric Oxide Experiment (SNOE) only cover 1998–2000. Additionally, some of the improvement can be accredited to the introduction of the two new indices, since they include information of auroral activity on prior days that can significantly enhance the number density of NO in the MLT during winter in the absence of sunlight. As a next step, SANOMA could be used as input in chemical models, as a priori information for the retrieval of NO from measurements, or as a tool to compare Odin SMR NO with other instruments. SANOMA and accompanying scripts are available on http://odin.rss.chalmers.se (last access: 15 September 2018).


Sign in / Sign up

Export Citation Format

Share Document