scholarly journals Some Results of The Coprime Graph of a Generalized Quaternion Group Q_4n

Author(s):  
Nurhabibah Nurhabibah ◽  
Abdul Gazir Syarifudin ◽  
I Gede Adhitya Wisnu Wardhana

AbstractThe Coprime graph is a graph from a finite group that is defined based on the order of each element of the group. In this research, we determine the coprime graph of generalized quaternion group Q_(4n) and its properties. The method used is to study literature and analyze by finding patterns based on some examples. The first result of this research is the form of the coprime graph of a generalized quaternion group Q_(4n) when n = 2^k, n an odd prime number, n an odd composite number, and n an even composite number. The next result is that the total of a cycle contained in the coprime graph of a generalized quaternion group Q_(4n) and cycle multiplicity when  is an odd prime number is p-1.Keywords: Coprime graph, generalized quaternion group, order, path AbstrakGraf koprima merupakan graf dari dari suatu grup hingga yang didefiniskan berdasarkan orde dari masing-masing elemen grup tersebut. Pada penelitian ini akan dibahas tentang bentuk graf koprima dari grup generalized quaternion Q_(4n). Metode yang digunakan dalam penelitian ini adalah studi literatur dan melakukan analisis berdasarkan pola yang ditemukan dalam beberapa contoh. Adapun hasil pertama dari penelitian adalah bentuk graf koprima dari grup generalized quaternion Q_(4n) untuk kasus n = 2^k, n bilangan prima ganjil ganjil, n bilangan komposit ganjil dan n bilangan komposit genap. Hasil selanjutnya adalah total sikel pada graf koprima dari grup generalized quaternion dan multiplisitas sikel ketika  bilangan prima ganjil adalah p-1.Kata kunci: Graf koprima, grup generalized quternion, orde

2019 ◽  
Vol 19 (01) ◽  
pp. 2050020 ◽  
Author(s):  
Xuanlong Ma ◽  
Yanhong She

The enhanced power graph of a finite group [Formula: see text] is the graph whose vertex set is [Formula: see text], and two distinct vertices are adjacent if they generate a cyclic subgroup of [Formula: see text]. In this paper, we establish an explicit formula for the metric dimension of an enhanced power graph. As an application, we compute the metric dimension of the enhanced power graph of an elementary abelian [Formula: see text]-group, a dihedral group and a generalized quaternion group.


2018 ◽  
Vol 60 (3) ◽  
pp. 673-680
Author(s):  
K. SOMORJIT SINGH ◽  
HEMANT KUMAR SINGH ◽  
TEJ BAHADUR SINGH

AbstractLet G be a finite group acting freely on a finitistic space X having cohomology type (0, b) (for example, $\mathbb S$n × $\mathbb S$2n is a space of type (0, 1) and the one-point union $\mathbb S$n ∨ $\mathbb S$2n ∨ $\mathbb S$3n is a space of type (0, 0)). It is known that a finite group G that contains ℤp ⊕ ℤp ⊕ ℤp, p a prime, cannot act freely on $\mathbb S$n × $\mathbb S$2n. In this paper, we show that if a finite group G acts freely on a space of type (0, 1), where n is odd, then G cannot contain ℤp ⊕ ℤp, p an odd prime. For spaces of cohomology type (0, 0), we show that every p-subgroup of G is either cyclic or a generalized quaternion group. Moreover, for n even, it is shown that ℤ2 is the only group that can act freely on X.


Author(s):  
A. Mahmoudifar ◽  
A. Babai

Let [Formula: see text] be a group. The enhanced power graph of [Formula: see text] is a graph with vertex set [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if there exists [Formula: see text] such that [Formula: see text] and [Formula: see text] for some [Formula: see text]. Also, a vertex of a graph is called dominating vertex if it is adjacent to every other vertex of the vertex set. Moreover, an enhanced power graph is said to be a dominatable graph if it has a dominating vertex other than the identity element. In an article of 2018, Bera and his coauthor characterized all abelian finite groups and nonabelian finite [Formula: see text]-groups such that their enhanced power graphs are dominatable (see [2]). In addition as an open problem, they suggested characterizing all finite nonabelian groups such that their enhanced power graphs are dominatable. In this paper, we try to answer their question. We prove that the enhanced power graph of finite group [Formula: see text] is dominatable if and only if there is a prime number [Formula: see text] such that [Formula: see text] and the Sylow [Formula: see text]-subgroups of [Formula: see text] are isomorphic to either a cyclic group or a generalized quaternion group.


2008 ◽  
Vol 07 (06) ◽  
pp. 735-748 ◽  
Author(s):  
BEHROOZ KHOSRAVI

Let G be a finite group. The prime graph Γ(G) of G is defined as follows. The vertices of Γ(G) are the primes dividing the order of G and two distinct vertices p, q are joined by an edge if there is an element in G of order pq. It is proved that if p > 11 and p ≢ 1 (mod 12), then PSL(2,p) is uniquely determined by its prime graph. Also it is proved that if p > 7 is a prime number and Γ(G) = Γ(PSL(2,p2)), then G ≅ PSL(2,p2) or G ≅ PSL(2,p2).2, the non-split extension of PSL(2,p2) by ℤ2. In this paper as the main result we determine finite groups G such that Γ(G) = Γ(PSL(2,q)), where q = pk. As a consequence of our results we prove that if q = pk, k > 1 is odd and p is an odd prime number, then PSL(2,q) is uniquely determined by its prime graph and so these groups are characterizable by their prime graph.


2010 ◽  
Vol 20 (07) ◽  
pp. 847-873 ◽  
Author(s):  
Z. AKHLAGHI ◽  
B. KHOSRAVI ◽  
M. KHATAMI

Let G be a finite group. The prime graph Γ(G) of G is defined as follows. The vertices of Γ(G) are the primes dividing the order of G and two distinct vertices p, p′ are joined by an edge if there is an element in G of order pp′. In [G. Y. Chen et al., Recognition of the finite almost simple groups PGL2(q) by their spectrum, Journal of Group Theory, 10 (2007) 71–85], it is proved that PGL(2, pk), where p is an odd prime and k > 1 is an integer, is recognizable by its spectrum. It is proved that if p > 19 is a prime number which is not a Mersenne or Fermat prime and Γ(G) = Γ(PGL(2, p)), then G has a unique nonabelian composition factor which is isomorphic to PSL(2, p). In this paper as the main result, we show that if p is an odd prime and k > 1 is an odd integer, then PGL(2, pk) is uniquely determined by its prime graph and so these groups are characterizable by their prime graphs.


Author(s):  
BJÖRN SCHUSTER

For any fixed prime p and any non-negative integer n there is a 2(pn − 1)-periodic generalized cohomology theory K(n)*, the nth Morava K-theory. Let G be a finite group and BG its classifying space. For some time now it has been conjectured that K(n)*(BG) is concentrated in even dimensions. Standard transfer arguments show that a finite group enjoys this property whenever its p-Sylow subgroup does, so one is reduced to verifying the conjecture for p-groups. It is easy to see that it holds for abelian groups, and it has been proved for some non-abelian groups as well, namely groups of order p3 ([7]) and certain wreath products ([3], [2]). In this note we consider finite (non-abelian) 2-groups with maximal normal cyclic subgroup, i.e. dihedral, semidihedral, quasidihedral and generalized quaternion groups of order a power of two.


1980 ◽  
Vol 79 ◽  
pp. 187-190 ◽  
Author(s):  
Shizuo Endo ◽  
Takehiko Miyata

There are some errors in Theorems 3.3 and 4.2 in [2]. In this note we would like to correct them.1) In Theorem 3.3 (and [IV]), the condition (1) must be replaced by the following one;(1) П is (i) a cyclic group, (ii) a dihedral group of order 2m, m odd, (iii) a direct product of a cyclic group of order qf, q an odd prime, f ≧ 1, and a dihedral group of order 2m, m odd, where each prime divisor of m is a primitive qf-1(q — 1)-th root of unity modulo qf, or (iv) a generalized quaternion group of order 4m, m odd, where each prime divisor of m is congruent to 3 modulo 4.


2019 ◽  
Vol 22 (5) ◽  
pp. 953-974
Author(s):  
Ángel del Río ◽  
Mariano Serrano

Abstract H. J. Zassenhaus conjectured that any unit of finite order and augmentation 1 in the integral group ring {\mathbb{Z}G} of a finite group G is conjugate in the rational group algebra {\mathbb{Q}G} to an element of G. We prove the Zassenhaus conjecture for the groups {\mathrm{SL}(2,p)} and {\mathrm{SL}(2,p^{2})} with p a prime number. This is the first infinite family of non-solvable groups for which the Zassenhaus conjecture has been proved. We also prove that if {G=\mathrm{SL}(2,p^{f})} , with f arbitrary and u is a torsion unit of {\mathbb{Z}G} with augmentation 1 and order coprime with p, then u is conjugate in {\mathbb{Q}G} to an element of G. By known results, this reduces the proof of the Zassenhaus conjecture for these groups to proving that every unit of {\mathbb{Z}G} of order a multiple of p and augmentation 1 has order actually equal to p.


Sign in / Sign up

Export Citation Format

Share Document