EVALUATION OF IMPEDANCE CARDIAC OUTPUT IN CHILDREN

PEDIATRICS ◽  
1971 ◽  
Vol 47 (5) ◽  
pp. 870-879
Author(s):  
Zuhdi Lababidi ◽  
D. A. Ehmke ◽  
Robert E. Durnin ◽  
Paul E. Leaverton ◽  
Ronald M. Lauer

In 20 children without shunts or valvular insufficiency, duplicate dye dilution and impedance cardiac outputs (ICO) were carried out. The duplicate dye dilutions had a standard deviation 0.259 L/min/m2, while duplicate ICO had a standard deviation 0.192 L/min/m2 (F = 1.82, p < 0.05). Of 53 sequential estimates, cardiac outputs measured by both indicator dye dilution and ICO had a 5.5% mean difference. In 21 subjects with left to right shunts, the ICO related well with pulmonary blood flow (r = 0.92) rather than systemic flow (r = 0.21). In 13 subjects with aortic insufficiency, sequential Fick and ICO had a 50% mean difference; the impedance measurement was found to be higher in every case. These data indicate that the impedance cardiograph can provide a noninvasive measure of cardiac output when there are no shunts or valvular insufficiencies. In subjects with left to right shunts the impedance cardiograph provides a measure of the pulmonary blood flow. When aortic insufficiency exists the impedance cardiograph is distorted such that it is consistently higher than Fick cardiac output.

1994 ◽  
Vol 76 (5) ◽  
pp. 2130-2139 ◽  
Author(s):  
E. M. Williams ◽  
J. B. Aspel ◽  
S. M. Burrough ◽  
W. A. Ryder ◽  
M. C. Sainsbury ◽  
...  

A theoretical model (Hahn et al. J. Appl. Physiol. 75: 1863–1876, 1993) predicts that the amplitudes of the argon and nitrous oxide inspired, end-expired, and mixed expired sinusoids at forcing periods in the range of 2–3 min (frequency 0.3–0.5 min-1) can be used directly to measure airway dead space, lung alveolar volume, and pulmonary blood flow. We tested the ability of this procedure to measure these parameters continuously by feeding monosinusoidal argon and nitrous oxide forcing signals (6 +/- 4% vol/vol) into the inspired airstream of nine anesthetized ventilated dogs. Close agreement was found between single-breath and sinusoid airway dead space measurements (mean difference 15 +/- 6%, 95% confidence limit), N2 washout and sinusoid alveolar volume (mean difference 4 +/- 6%, 95% confidence limit), and thermal dilution and sinusoid pulmonary blood flow (mean difference 12 +/- 11%, 95% confidence limit). The application of 1 kPa positive end-expiratory pressure increased airway dead space by 12% and alveolar volume from 0.8 to 1.1 liters but did not alter pulmonary blood flow, as measured by both the sinusoid and comparator techniques. Our findings show that the noninvasive sinusoid technique can be used to measure cardiorespiratory lung function and allows changes in function to be resolved in 2 min.


1972 ◽  
Vol 84 (3) ◽  
pp. 371-376 ◽  
Author(s):  
Elmer Treat ◽  
Harvey Ulano ◽  
Marc Pfeffer ◽  
Walter Massion ◽  
Linda L. Shanbour ◽  
...  

1986 ◽  
Vol 71 (s15) ◽  
pp. 36P-36P ◽  
Author(s):  
A.H. Kendrick ◽  
A. Rozkovec ◽  
M. Papouchado ◽  
J. West ◽  
J.E. Bees ◽  
...  

2013 ◽  
Vol 114 (1) ◽  
pp. 107-118 ◽  
Author(s):  
Amran K. Asadi ◽  
Matthew V. Cronin ◽  
Rui Carlos Sá ◽  
Rebecca J. Theilmann ◽  
Sebastiaan Holverda ◽  
...  

The temporal dynamics of blood flow in the human lung have been largely unexplored due to the lack of appropriate technology. Using the magnetic resonance imaging method of arterial spin labeling (ASL) with subject-gated breathing, we produced a dynamic series of flow-weighted images in a single sagittal slice of the right lung with a spatial resolution of ∼1 cm3and a temporal resolution of ∼10 s. The mean flow pattern determined from a set of reference images was removed to produce a time series of blood flow fluctuations. The fluctuation dispersion (FD), defined as the spatial standard deviation of each flow fluctuation map, was used to quantify the changes in distribution of flow in six healthy subjects in response to 100 breaths of hypoxia (FiO2= 0.125) or hyperoxia (FiO2= 1.0). Two reference frames were used in calculation, one determined from the initial set of images (FDglobal), and one determined from the mean of each corresponding baseline or challenge period (FDlocal). FDlocalthus represented changes in temporal variability as a result of intervention, whereas FDglobalencompasses both FDlocaland any generalized redistribution of flow associated with switching between two steady-state patterns. Hypoxic challenge resulted in a significant increase (96%, P < 0.001) in FDglobalfrom the normoxic control period and in FDlocal(46%, P = 0.0048), but there was no corresponding increase in spatial relative dispersion (spatial standard deviation of the images divided by the mean; 8%, not significant). There was a smaller increase in FDglobalin response to hyperoxia (47%, P = 0.0015) for the single slice, suggestive of a more general response of the pulmonary circulation to a change from normoxia to hyperoxia. These results clearly demonstrate a temporal change in the sampled distribution of pulmonary blood flow in response to hypoxia, which is not observed when considering only the relative dispersion of the spatial distribution.


1989 ◽  
Vol 76 (6) ◽  
pp. 673-676 ◽  
Author(s):  
A. H. Kendrick ◽  
A. Rozkovec ◽  
M. Papouchado ◽  
J. West ◽  
G. Laszlo

1. Resting pulmonary blood flow (Q.), using the uptake of the soluble inert gas Freon-22 and an indirect estimate of lung tissue volume, has been estimated during breath-holding (Q.c) and compared with direct Fick cardiac output (Q.f) in 16 patients with various cardiac disorders. 2. The effect of breath-hold time was investigated by comparing Q.c estimated using 6 and 10 s of breath-holding in 17 patients. Repeatability was assessed by duplicate measurements of Q.c in the patients and in six normal subjects. 3. Q.c tended to overestimate Q.f, the bias and error being 0.09 l/min and 0.59, respectively. The coefficient of repeatability for Q.c in the patients was 0.75 l/min and in the normal subjects was 0.66 1/min. For Q.f it was 0.72 l/min. There was no significant difference in Q.c measured at the two breath-hold times. 4. The technique is simple to perform, and provides a rapid estimate of Q., monitoring acute and chronic changes in cardiac output in normal subjects and patients with cardiac disease.


2018 ◽  
Vol 121 (3) ◽  
pp. 550-558 ◽  
Author(s):  
J. Karlsson ◽  
P. Winberg ◽  
B. Scarr ◽  
P.A. Lönnqvist ◽  
E. Neovius ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document