scholarly journals Inferior Extensions of the Atrioventricular Node

2021 ◽  
Vol 10 (4) ◽  
pp. 262-272
Author(s):  
Robert H Anderson ◽  
Jill PJM Hikspoors ◽  
Justin T Tretter ◽  
Yolanda Mac�as ◽  
Diane E Spicer ◽  
...  

The pathways for excitation of the atrioventricular node enter either superiorly, as the so-called ‘fast’ pathway, or inferiorly as the ‘slow’ pathway. However, knowledge of the specific anatomical details of these pathways is limited. Most of the experimental studies that established the existence of these pathways were conducted in mammalian hearts, which have subtle differences to human hearts. In this review, the authors summarise their recent experiences investigating human cardiac development, correlating these results with the arrangement of the connections between the atrial myocardium and the compact atrioventricular node as revealed by serial sectioning of adult human hearts. They discuss the contributions made from the atrioventricular canal myocardium, as opposed to the primary ring. Both these rings are incorporated into the atrial vestibules, albeit with the primary ring contributing only to the tricuspid vestibule. The atrial septal cardiomyocytes are relatively late contributors to the nodal inputs. Finally, they relate our findings of human cardiac development to the postnatal arrangement.

2001 ◽  
Vol 12 (4) ◽  
pp. 479-486 ◽  
Author(s):  
LI-JEN LIN ◽  
JACQUES BILLETTE ◽  
DJAMILA MEDKOUR ◽  
MARIE CLAUDE REID ◽  
MAURICE TREMBLAY ◽  
...  

Medicina ◽  
2009 ◽  
Vol 45 (8) ◽  
pp. 632 ◽  
Author(s):  
Rima Šileikienė ◽  
Dalia Bakšienė ◽  
Vytautas Šileikis ◽  
Tomas Kazakavičius ◽  
Jolanta Vaškelytė ◽  
...  

Radiofrequency ablation of the slow pathway is an effective method of treatment in children with atrioventricular nodal reentrant tachycardia. The aim of our study was to evaluate anterograde conduction properties in children before and after radiofrequency ablation of the slow pathway and to determine the efficacy and safety of this method. Material and methods. Noninvasive transesophageal electrophysiological examination was performed in 30 patients at the follow-up period (mean duration, 3.24 years) after radiofrequency ablation of the slow pathway. Results. The slow pathway function was observed in 13 patients one day after ablation, in 26 patients during the follow-up period, and in 28 patients after administration of atropine sulfate. Atrioventricular node conduction was significantly decreased the following day after ablation and at the follow-up versus the preablation (165.2 [30.2] bmp and 146.3 [28.5] bpm versus 190.9 [31.4] bpm; P<0.001). The atrioventricular node effective refractory period prolonged significantly the following day after ablation and at the follow-up versus the preablation (319.3 [55.3] ms and 351.0 [82.1] ms versus 248.3 [36.6] ms; P<0.001). Effective refractory period of the fast pathway prolonged significantly as compared with the preablation (from 408.0 [60.4] ms to 481.2 [132.9] ms; P=0.005). The prolongation of effective refractory period of the slow pathway was more significant than effective refractory period of the fast pathway at the follow-up (P<0.001). Two late recurrences occurred; one patient had atrial tachycardia. Conclusion. Children with atrioventricular nodal reentrant tachycardia can be effectively and safety cured by ablative therapy. The end-point during slow pathway ablation should be the abolition of tachycardia with preservation of dual atrioventricular nodal physiology.


2000 ◽  
Vol 10 (4) ◽  
pp. 376-383 ◽  
Author(s):  
Pedro Iturralde ◽  
Luís Colín ◽  
Sergio Kershenovich ◽  
Milton E. Guevara ◽  
Argelia Medeiros ◽  
...  

AbstractWe report our experience in radiofrequency catheter ablation between April, 1992 and December, 1998, in which we treated 287 parients less than 18 years of age (mean 14.3±3.1 years) with supraventricular tachycardia. Accessory pathways were the arrhythmic substrate in 252 of the patients (87.8%), the patients having a total of 265 accessory pathways. Atrioventricular nodal re-entry was the cause of tachycardia in 26 patients (9.0%), while atrial flutter was detected in the remaining 9 patients (3.1%). We were able successfully to eliminate the accessory pathway in 236 patients (89%), but 25 patients had recurrent arrhythmias. Ablation proved successful in all cases of atrioventricular node re-entry tachycardia, the slow pathway being ablated in 25 patients, and the fast pathway in only one case. Recurrence of the arrhythmia occurred in three patients (11.5%). We performed a second ablation in these children, all then proving successful. The ablation was successful in all cases of atrial flutter, with one recurrence (11.1%). Overall, therefore, ablation was immediately successful in 271 patients (94.4%), with a recurrence of the arrhythmia in 29 cases (10.7%). The incidence of serious complications was 2.09% There was one late death due to infective endocarditis, 3 patients suffered complete heart block, 1 had mild mitral regurgitation, and 1 patient developed an haematoma in the groin. We conclude that radiofrequency catheter ablation can now be considered a standard option for the management of paroxysmal supraventricular tachycardias in children and young adults.


1994 ◽  
Vol 24 (4) ◽  
pp. 1064-1068 ◽  
Author(s):  
Jasbir S. Sra ◽  
Mohammad R. Jazayeri ◽  
Zalmen Blanck ◽  
Sanjay Deshpande ◽  
Anwer A. Dhala ◽  
...  

1992 ◽  
Vol 70 (9) ◽  
pp. 886-889 ◽  
Author(s):  
Mark Wathen ◽  
Andrea Natale ◽  
Kevin Wolfe ◽  
Raymond Yee ◽  
David Newman ◽  
...  

2021 ◽  
Author(s):  
Christopher J. Derrick ◽  
Eric J. G. Pollitt ◽  
Ashley Sanchez Sevilla Uruchurtu ◽  
Farah Hussein ◽  
Emily S. Noёl

AbstractDuring early vertebrate heart development, the heart transitions from a linear tube to a complex asymmetric structure. This process includes looping of the tube and ballooning of the emerging cardiac chambers, which occur simultaneously with growth of the heart. A key driver of cardiac growth is deployment of cells from the Second Heart Field (SHF) into both poles of the heart, with cardiac morphogenesis and growth intimately linked in heart development. Laminin is a core component of extracellular matrix (ECM) basement membranes, and although mutations in specific laminin subunits are linked with a variety of cardiac abnormalities, including congenital heart disease and dilated cardiomyopathy, no role for laminin has been identified in early vertebrate heart morphogenesis. We identified dynamic, tissue-specific expression of laminin subunit genes in the developing zebrafish heart, supporting a role for laminins in heart morphogenesis.lamb1amutants exhibit cardiomegaly from 2dpf onwards, with subsequent progressive defects in cardiac morphogenesis characterised by a failure of the chambers to compact around the developing atrioventricular canal. We show that loss oflamb1aresults in excess addition of SHF cells to the atrium, revealing that Lamb1a functions to limit heart size during cardiac development by restricting SHF addition to the venous pole.lamb1amutants exhibit hallmarks of altered haemodynamics, and specifically blocking cardiac contractility inlamb1amutants rescues heart size and atrial SHF addition. Furthermore, we identify that FGF and RA signalling, two conserved pathways promoting SHF addition, are regulated by heart contractility and are dysregulated inlamb1amutants, suggesting that laminin mediates interactions between SHF deployment, heart biomechanics, and biochemical signalling during heart development. Together, this describes the first requirement for laminins in early vertebrate heart morphogenesis, reinforcing the importance of specialised ECM composition in cardiac development.


Sign in / Sign up

Export Citation Format

Share Document