effective refractory period
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 16)

H-INDEX

18
(FIVE YEARS 1)

Author(s):  
Yasunobu Yamagishi ◽  
Yasushi Oginosawa ◽  
Yoshihisa Fujino ◽  
Keishiro Yagyu ◽  
Taro Miyamoto ◽  
...  

Background: In terms of the pulmonary vein (PV), atrial fibrillation (AF) patients have a shorter effective refractory period (ERP) and a larger dispersion of the ERP than patients without AF. Although the frequency of AF from the superior vena cava (SVC) was the highest among non-PV foci, the characteristics of the ERP in the SVC (SVC-ERP) were unclear. The purpose of this study was to elucidate the relationship between SVC-ERP and the inducibility of AF after pulmonary vein isolation (PVI). Methods and Results: Consecutive 28 patients who underwent PVI were included. After successful PVI, the SVC-ERP was measured at three positions in SVC. Rapid electrical stimuli were delivered at the shortest SVC-ERP to induce AF. Patients in whom AF was induced were assigned to the SVC-induced group (SIG) and the remaining patients were the non-SVC-induced group (non-SIG). The size of the SVC sleeve was evaluated using three-dimensional electroanatomic mapping. The SIG had a significantly shorter average SVC-ERP (236.0±25.2 vs. 294.8±36.8 ms, p<0.001), while SVC-ERP dispersion was not significantly different (30.0±25.4 vs. 33.3±20.1 ms, p=0.56). Although the longer SVC diameter was significantly longer in the SIG (27.4±4.3 vs. 22.9±4.6 mm, p=0.03), the SVC-ERP was significantly associated with pacing inducibility of AF after adjustment for the longer SVC diameter (odds ratio: 0.96 [1-ms increments], p=0.01). Conclusions: The SIG had a shorter SVC-ERP, while the dispersion was not significantly different between the two groups. The SVC-ERP can be one of the mechanisms of arrhythmogenicity for AF originating from the SVC.


2021 ◽  
Vol 8 ◽  
Author(s):  
Baozhen Qi ◽  
Shimo Dai ◽  
Yu Song ◽  
Dongli Shen ◽  
Fuhai Li ◽  
...  

SCN10A/NaV1.8 may be associated with a lower risk of ventricular fibrillation in the setting of acute myocardial infarction (AMI), but if and by which mechanism NaV1.8 impacts on ventricular electrophysiology is still a matter of debate. The purpose of this study was to elucidate the contribution of NaV1.8 in ganglionated plexi (GP) to ventricular arrhythmias in the AMI model. Twenty beagles were randomized to either the A-803467 group (n = 10) or the control group (n = 10). NaV1.8 blocker (A-803467, 1 μmol/0.5 mL per GP) or DMSO (0.5 mL per GP) was injected into four major GPs. Ventricular effective refractory period, APD90, ventricular fibrillation threshold, and the incidence of ventricular arrhythmias were measured 1 h after left anterior descending coronary artery occlusion. A-803467 significantly shortened ventricular effective refractory period, APD90, and ventricular fibrillation threshold compared to control. In the A-803467 group, the incidence of ventricular arrhythmias was significantly higher compared to control. A-803467 suppressed the slowing of heart rate response to high-frequency electrical stimulation of the anterior right GP, suggesting that A-803467 could inhibit GP activity. SCN10A/NaV1.8 was readily detected in GPs, but was not validated in ventricles by quantitative RT-PCR, western blot and immunohistochemistry. While SCN10A/NaV1.8 is detectible in canine GPs but not in ventricles, blockade of NaV1.8 in GP increases the incidence of ventricular arrhythmias in AMI hearts. Our study shows for the first time an influence of SCN10A/NaV1.8 on the regulation of ventricular arrhythmogenesis via modulating GP activity in the AMI model.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ryuichi Kambayashi ◽  
Hiroko Izumi-Nakaseko ◽  
Ai Goto ◽  
Kazuya Tsurudome ◽  
Hironori Ohshiro ◽  
...  

Oseltamivir has been shown to prolong the atrial conduction time and effective refractory period, and to suppress the onset of burst pacing-induced atrial fibrillation in vitro. To better predict its potential clinical benefit as an anti-atrial fibrillatory drug, we performed translational studies by assessing in vivo anti-atrial fibrillatory effect along with in vivo and in vitro electropharmacological analyses. Oseltamivir in intravenous doses of 3 (n = 6) and 30 mg/kg (n = 7) was administered in conscious state to the persistent atrial fibrillation model dogs to confirm its anti-atrial fibrillatory action. The model was prepared by tachypacing to the atria of chronic atrioventricular block dogs for &gt; 6 weeks. Next, oseltamivir in doses of 0.3, 3 and 30 mg/kg was intravenously administered to the halothane-anesthetized intact dogs to analyze its in vivo electrophysiological actions (n = 4). Finally, its in vitro effects of 10–1,000 μM on IK,ACh, IKur, IKr, INa and ICaL were analyzed by using cell lines stably expressing Kir3.1/3.4, KV1.5, hERG, NaV1.5 or CaV1.2, respectively (n = 3 for IK,ACh and IKr or n = 6 for IKr, INa and ICaL). Oseltamivir in doses of 3 and 30 mg/kg terminated the atrial fibrillation in 1 out of 6 and in 6 out of 7 atrial fibrillation model dogs, respectively without inducing any lethal ventricular arrhythmia. Its 3 and 30 mg/kg delayed inter-atrial conduction in a frequency-dependent manner, whereas they prolonged atrial effective refractory period in a reverse frequency-dependent manner in the intact dogs. The current assay indicated that IC50 values for IK,ACh and IKr were 160 and 231 μM, respectively, but 1,000 µM inhibited INa, ICaL and IKur by 22, 19 and 13%, respectively. The extent of INa blockade was enhanced at faster beating rate and more depolarized resting membrane potential. Oseltamivir effectively terminated the persistent atrial fibrillation, which may be largely due to the prolongation of the atrial effective refractory period and inter-atrial conduction time induced by IK,ACh and IKr inhibitions along with INa suppression. Thus, oseltamivir can exert a powerful anti-atrial fibrillatory action through its ideal multi-channel blocking property; and oseltamivir would become a promising seed compound for developing efficacious and safe anti-atrial fibrillatory drugs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Luca Azzolin ◽  
Steffen Schuler ◽  
Olaf Dössel ◽  
Axel Loewe

In both clinical and computational studies, different pacing protocols are used to induce arrhythmia and non-inducibility is often considered as the endpoint of treatment. The need for a standardized methodology is urgent since the choice of the protocol used to induce arrhythmia could lead to contrasting results, e.g., in assessing atrial fibrillation (AF) vulnerabilty. Therefore, we propose a novel method—pacing at the end of the effective refractory period (PEERP)—and compare it to state-of-the-art protocols, such as phase singularity distribution (PSD) and rapid pacing (RP) in a computational study. All methods were tested by pacing from evenly distributed endocardial points at 1 cm inter-point distance in two bi-atrial geometries. Seven different atrial models were implemented: five cases without specific AF-induced remodeling but with decreasing global conduction velocity and two persistent AF cases with an increasing amount of fibrosis resembling different substrate remodeling stages. Compared with PSD and RP, PEERP induced a larger variety of arrhythmia complexity requiring, on average, only 2.7 extra-stimuli and 3 s of simulation time to initiate reentry. Moreover, PEERP and PSD were the protocols which unveiled a larger number of areas vulnerable to sustain stable long living reentries compared to RP. Finally, PEERP can foster standardization and reproducibility, since, in contrast to the other protocols, it is a parameter-free method. Furthermore, we discuss its clinical applicability. We conclude that the choice of the inducing protocol has an influence on both initiation and maintenance of AF and we propose and provide PEERP as a reproducible method to assess arrhythmia vulnerability.


2021 ◽  
Vol 11 (5) ◽  
pp. 2189
Author(s):  
Zihui Geng ◽  
Lian Jin ◽  
Honglei Zhu ◽  
Jianfei Wang ◽  
Xiaomei Wu

Myocardial ischemia could induce arrhythmias such as ventricular tachycardia and ventricular fibrillation, leading to sudden death and other serious consequences. This manuscript adopted the cardiac modeling and simulation method to study the activity pattern of myocardial ischemia-related ventricular tachycardia and the effect of increased extracellular potassium concentration on arrhythmia vulnerability. A whole ventricular electrophysiological model of endocardial ischemia caused by distal occlusion of left anterior descending coronary artery was established. The simulation results suggested that the relationship between the vulnerability of ventricular arrhythmias and extracellular potassium concentration was bell shaped with a peak in susceptibility at 12 mM. This result was caused by the effect of extracellular potassium concentration on the dispersion of repolarization and the effective refractory period of cardiomyocytes. The extension of the effective refractory period was due to the electrical remodeling of the ventricle. Specifically, it was because of the delayed recovery of the INa current. In addition, the regularity of endocardial/epicardial reentrant pattern during non-transmural ischemia was also analyzed. The endocardium formed micro-reentrant, while the epicardium established macro-reentrant rotating around the ischemic regions provided a new idea for the determination of clinical ablation targets.


2021 ◽  
Author(s):  
Luca Azzolin ◽  
Steffen Schuler ◽  
Axel Loewe ◽  
Olaf Dössel

AbstractIn both clinical and computational studies, different pacing protocols are used to induce arrhythmia and non-inducibility is often considered as the endpoint of treatment. The need for a standardized methodology is urgent since the choice of the protocol used to induce arrhythmia could lead to contrasting results, e.g., in assessing atrial fibrillation (AF) vulnerabilty. Therefore, we propose a novel method – pacing at the end of the effective refractory period (PEERP) – and compare it to state-of-the-art protocols such as phase singularity distribution (PSD) and rapid pacing (RP) in a computational study. All methods were tested by pacing from 227 evenly distributed endocardial points in a bi-atrial geometry. 6 different atrial models were implemented: 4 cases without specific AF-induced remodelling but with decreasing global conduction velocity and 2 persistent AF cases with an increasing amount of fibrosis resembling different substrate remodeling stages. Compared with PSD and RP, PEERP induced a larger variety of arrhythmia complexity requiring, on average, only 2.7 extra-stimuli and 3 s of simulation time to initiate reentry. Moreover, PEERP and PSD were the protocols which unveiled a larger number of areas vulnerable to sustain stable long living reentries compared to RP. Finally, PEERP can foster standardization and reproducibility, since, in contrast to the other protocols, it is a parameter-free method. Furthermore, we discuss its clinical applicability. We conclude that the choice of the inducing protocol has an influence on both initiation and maintenance of AF and we propose and provide PEERP as a reproducible method to assess arrhythmia vulnerability.


2021 ◽  
pp. 1-5
Author(s):  
Minh B. Nguyen ◽  
Allison C. Hill ◽  
Yaniv Bar-Cohen ◽  
Michael J. Silka

Abstract There is minimal data regarding antegrade-only accessory pathways in young patients. Given evolving recommendations and treatments, retrospective analysis of the clinical and electrophysiologic properties of antegrade-only pathways in patients <21 years old was performed, with subsequent comparison of electrophysiology properties to age-matched controls with bidirectional pathways. Of 522 consecutive young patients with ventricular pre-excitation referred for electrophysiology study, 33 (6.3%) had antegrade-only accessory pathways. Indications included palpitations (47%), chest pain (25%), and syncope (22%). The shortest value for either the accessory pathway effective refractory period or the pre-excited R-R interval was taken for each patient, with the median of the antegrade-only group significantly greater than shortest values for the bidirectional group (310 [280–360] ms versus 270 [240–302] ms, p < 0.001). However, the prevalence of pathways with high-risk properties (effective refractory period or shortest pre-excited R-R interval <250 ms) was similar in both study patients and controls (13% versus 21%) (p = 0.55). Sixteen patients had a single antegrade-only accessory pathway and no inducible arrhythmia. Six patients had Mahaim fibres, all right anterolateral with inducible antidromic reciprocating tachycardia. However, 11 patients with antegrade-only accessory pathways and 3 with Mahaim fibres had inducible tachycardia due to a second substrate recognised at electrophysiology study. These included concealed accessory pathways (7), bidirectional accessory pathways (5), and atrioventricular node re-entry (2). Antegrade-only accessory pathways require comprehensive electrophysiology evaluation as confounding factors such as high-risk conduction properties or inducible Supraventricular Tachycardia (SVT) due to a second substrate of tachycardia are often present.


Author(s):  
Ryo Nishinarita ◽  
Shinichi Niwano ◽  
Hiroe Niwano ◽  
Hironori Nakamura ◽  
Daiki Saito ◽  
...  

Background Recent clinical trials have demonstrated the possible pleiotropic effects of SGLT2 (sodium–glucose cotransporter 2) inhibitors in clinical cardiovascular diseases. Atrial electrical and structural remodeling is important as an atrial fibrillation (AF) substrate. Methods and Results The present study assessed the effect of canagliflozin (CAN), an SGLT2 inhibitor, on atrial remodeling in a canine AF model. The study included 12 beagle dogs, with 10 receiving continuous rapid atrial pacing and 2 acting as the nonpacing group. The 10 dogs that received continuous rapid atrial pacing for 3 weeks were subdivided as follows: pacing control group (n=5) and pacing+CAN (3 mg/kg per day) group (n=5). The atrial effective refractory period, conduction velocity, and AF inducibility were evaluated weekly through atrial epicardial wires. After the protocol, atrial tissues were sampled for histological examination. The degree of reactive oxygen species expression was evaluated by dihydroethidium staining. The atrial effective refractory period reduction was smaller ( P =0.06) and the degree of conduction velocity decrease was smaller in the pacing+CAN group compared with the pacing control group ( P =0.009). The AF inducibility gradually increased in the pacing control group, but such an increase was suppressed in the pacing+CAN group ( P =0.011). The pacing control group exhibited interstitial fibrosis and enhanced oxidative stress, which were suppressed in the pacing+CAN group. Conclusions CAN and possibly other SGLT2 inhibitors might be useful for preventing AF and suppressing the promotion of atrial remodeling as an AF substrate.


2021 ◽  
Vol 10 (2) ◽  
pp. 37
Author(s):  
MohammdAli Sadr-Ameli ◽  
Farzad Kamali ◽  
Milad Vahedinezhad ◽  
Sadaf Sadrameli

2020 ◽  
Vol 13 (8) ◽  
Author(s):  
Hirosuke Yamaji ◽  
Shunichi Higashiya ◽  
Takashi Murakami ◽  
Kazuyoshi Hina ◽  
Hiroshi Kawamura ◽  
...  

Background: Electrical remodeling precedes structural remodeling. In adjunctive left atrial (LA) low-voltage area (LVA) ablation to pulmonary vein isolation of atrial fibrillation (AF), LA areas without LVA have not been targeted for ablation. We studied the effect of adjunctive LA posterior wall isolation (PWI) on persistent AF without LA-LVA according to electrophysiological testing (EP test). Methods: We examined consecutive patients with persistent AF with (n=33) and without (n=111) LA-LVA. Patients without LA-LVA were randomly assigned to EP test–guided (n=57) and control (n=54) groups. In the EP test–guided group, an adjunctive PWI was performed in those with positive results (PWI subgroup; n=24), but not in those with negative results (n=33). The criteria for positive EP tests were an effective refractory period ≤180 ms, effective refractory period>20 ms shorter than the other sites, and/or induction of AF/atrial tachycardia (AT) during measurements. LVA ablation was performed in the patients with LA-LVA. Results: During the follow-up period (62±33 weeks), the EP test–guided group had significantly lower recurrence rates (19%,11/57 versus 41%, 22/54, P =0.012) and higher Kaplan-Meier AF/AT–free survival curve rates than the control group ( P =0.01). No significant differences in the recurrence and AF/AT–free survival curve rates between the PWI (positive EP test) and non-PWI (negative EP test) subgroups were observed. Therefore, PWI for positive EP tests reduced the AF/AT recurrence in the EP test–guided group. A stepwise Cox proportional hazard analyses identified EP test–guided ablation as a factor reducing the recurrence rate. The recurrence rates in the LA-LVA ablation group and EP test–guided group were similar. Conclusions: This pilot study proposed that an EP test–guided adjunctive PWI of persistent AF without LA-LVA potentially reduced AF/AT recurrences. The results suggest that there is an AF substrate in the LA with altered electrophysiological function even when there is no LA-LVA. Graphic Abstract: A graphic abstract is available for this article.


Sign in / Sign up

Export Citation Format

Share Document