scholarly journals Leaf blade anatomy of the rare Siberian flora species Mertensia sibirica (L.) G. Don fil. (Boraginaceae)

2020 ◽  
Vol 10 (5) ◽  
pp. 186-191
Author(s):  
T.N. Belaeva ◽  
A.N. Butenkova

The authors present the findings of a leaf blade anatomy study for the rare relict Siberian flora species Mertensia sibirica (L.) G. Don fil. (Boraginaceae). They collected samples for the study from natural habitats in Chita Region (Chikoy Range) and then planted them in the introduction area of the Siberian Botanic Garden (Tomsk) located in the southern taiga subzone of Western Siberia. The parameters of the photosynthetic and stomatal complex of M. sibirica were studied for the first time. It was found out that the rosette and cauline leaves of the species under study are hypostomatous, with an anomocytic stomatal complex. The epidermis is single-layer. On average, the adaxial epidermis has larger cells vs. abaxial epidermis. The leaf mesophyll is 242.90–369.90 µm thick, dorsiventral. The adaxial side of the leaf comprises glandular trichomes surrounded with pronounced rosettes of cells in the base part. The cauline leaf significantly differs from the rosette leaf in finer cells of its adaxial and abaxial epidermis (and, consequently, their larger number per 1 mm2), while the adaxial epidermal cells are thicker, and in a larger number of stomata in the abaxial epidermis. The palisade mesophyll in the cauline leaf is more developed vs. the rosette leaf, while the cells are longer and the palisade/spongy mesophyll ratio is higher. The rosette leaves have a more developed system of vascular tissues vs. cauline ones, as they play the main role in providing plants with water and nutrients. The contribution of the cauline leaf palisade mesophyll to the photosynthetic potential of M. sibirica is higher vs. that of the rosette leaf (the ratio between palisade and spongy mesophyll is 0.45 vs. 0.36, respectively), which characterizes the cauline leaf as more heliophytic. The stomatal complex and mesophyll parameters under study are primarily characterized by low variance. As for dermal tissue parameters, medium variance is typical of the thickness and size of the abaxial and adaxial epidermal cells. Coefficients of variation for the cells of the upper mesophyll layer (CV=31.2–41.6%) and the number of stomata on the lower epidermis of the rosette leaf (CV=21.5%) demonstrate medium and high variance. A very high coefficient of variation (116.2–174.0) is registered for the adaxial epidermis parameter characterizing the density of trichomes per 1 mm2. The study results were used to develop an optimal M. sibirica cultivation regime under conditions of introduction in the southern taiga subzone of Western Siberia.


Author(s):  

A detailed analysis of river flow long-term changes in the Southern taiga subzone of Western Siberia has been carried out with the Chaya River basin as an example. Causal statistical analysis of changes in groundwater levels, bog water level, air temperature and atmospheric precipitation has been performed. The conducted studies revealed a statistically significant trend in the increase of surface runoff in the winter low flow of the Chaya River and its large tributaries (the Iksa and the Parbig), as well as the underground runoff component for virtually the entire year. An ambiguous regularity has been observed in the change of the level regime of rivers. The main reason for the observed changes in the water regime of the said territory is the redistribution of atmospheric moisture and shifting of the boundaries of hydrological seasons.



1983 ◽  
Vol 61 (12) ◽  
pp. 3461-3470 ◽  
Author(s):  
Catherine Damerval

The micromorphology of the abaxial epidermis of the first and sixth leaf has been studied in seven annual species of Medicago L. The pattern of the epidermal cells and of the stomatal complex does not allow differentiation of the taxa. Three main types of trichomes are recognized on the two foliar levels; their localization on the first leaf epidermis allows identification of five taxa out of seven. Four quantitative variables are also examined: stomatal density, trichome density, guard cell length, and stomatal index. The variable having the best discriminant value is the guard cell length on the first leaf. It is possible to identify each of the seven species by a combination of two features: the localization of the types of trichomes on the first leaf and the stomatal density on the sixth leaf.





Author(s):  
Irina V. Kurina ◽  
◽  
Elena E. Veretennikova ◽  
Evgeniya A. Golovatskaya ◽  
Tatiana A. Blyakharchuk ◽  
...  


2015 ◽  
Vol 48 (8) ◽  
pp. 841-851 ◽  
Author(s):  
A. F. Sabrekov ◽  
M. V. Glagolev ◽  
I. A. Fastovets ◽  
B. A. Smolentsev ◽  
D. V. Il’yasov ◽  
...  


2021 ◽  
Vol 76 (1) ◽  
pp. 1-10
Author(s):  
L. G. Bogatyrev ◽  
A. I. Benediktova ◽  
M. M. Karpukhin ◽  
V. M. Telesnina ◽  
N. I. Zhilin ◽  
...  


2005 ◽  
Vol 53 (8) ◽  
pp. 789 ◽  
Author(s):  
Luzimar Campos da Silva ◽  
Aristéa Alves Azevedo ◽  
Eldo Antônio Monteiro da Silva ◽  
Marco Antonio Oliva

Seedlings and young saplings of some woody species were exposed to simulated low-pH acid rain, in order to develop a response screening for tropical tree species by determination of the symptoms of foliar injury and growth responses, as well as to identify anatomical alterations in the leaf blade of the most sensitive species. Gallesia integrifolia (Spreng.) Harms, Genipa americana L., Joannesia princeps Vell., Mimosa artemisiana Heringer & Paula and Spondias dulcis Forst.f. were exposed daily to 20 min of acid rain, pH 3.0, for 10 consecutive days. The degree of leaf damage and the anatomical alterations observed were efficient parameters to determine the sensitivity to acid rain. At the end of the experiment J. princeps was the most sensitive species as determined by foliar injury and seedling growth. The degree of leaf damage was similar among the seedlings, except in S. dulcis, which showed reduced percentage of foliar injury. Necrotic and chlorotic spots on the leaf blade occurred. In the most sensitive species, J. princeps, necrotic blade tissues showed accumulation of phenolic compounds, hypertrophy and collapsed cells. Most of the structural alterations were observed in the adaxial epidermis, the palisade parenchyma and spongy parenchyma and the abaxial epidermis. Long-term experiments with seedlings of S. dulcis and saplings of G. integrifolia are suggested, to characterise the response of these species that presented fewer symptoms but whose growth was affected under acid rain.



Sign in / Sign up

Export Citation Format

Share Document