scholarly journals Saturating ability of the borax melt

2019 ◽  
Vol 27 (2) ◽  
pp. 55-60
Author(s):  
L. I. Fedorenkova ◽  
G. P. Fedina

The work is devoted to the research of influence of the electrolysis on the saturating ability of the electrolyte, which is a borax melt. To establish regularity when the saturating medium activity changes, which influences the intensification of saturation process, the structure and properties of borax during electrolysis were investigated. The change in the saturating medium activity was estimated by a relative value equal to the ratio of the boride layer depth obtained by non-electrolysis borating to the layer depth obtained by electrolysis borating. When comparing the real and theoretical saturating abilities, their convergence was observed. It was found that the saturation ability of the borax melt increases with increasing electrolyte runtime, which is due to a change in the structural components of the borax melt. A quantum-chemical calculation of the borax molecule structure was carried out using the non-empirical method of molecular orbitals in the theory of the density functional (DFT) with the three-parameter exchange-correlation functional B3LYP. Calculations show that two main structures are characteristic of a borax molecule: non-coplanar, with two mutually perpendicular 4-membered boron-oxygen cycles and flat linear. An increase in the saturation ability of the borax melt during electrolysis allows the development of new low-energy borating processes.

2019 ◽  
Author(s):  
S. Giarrusso ◽  
Paola Gori-Giorgi

We analyze in depth two widely used definitions (from the theory of conditional probablity amplitudes and from the adiabatic connection formalism) of the exchange-correlation energy density and of the response potential of Kohn-Sham density functional theory. We introduce a local form of the coupling-constant-dependent Hohenberg-Kohn functional, showing that the difference between the two definitions is due to a corresponding local first-order term in the coupling constant, which disappears globally (when integrated over all space), but not locally. We also design an analytic representation for the response potential in the strong-coupling limit of density functional theory for a model single stretched bond.<br>


2019 ◽  
Author(s):  
Mark Iron ◽  
Trevor Janes

A new database of transition metal reaction barrier heights – MOBH35 – is presented. Benchmark energies (forward and reverse barriers and reaction energy) are calculated using DLPNO-CCSD(T) extrapolated to the complete basis set limit using a Weizmann1-like scheme. Using these benchmark energies, the performance of a wide selection of density functional theory (DFT) exchange–correlation functionals, including the latest from the Truhlar and Head-Gordon groups, is evaluated. It was found, using the def2-TZVPP basis set, that the ωB97M-V (MAD 1.8 kcal/mol), ωB97X-V (MAD 2.1 kcal/mol) and SCAN0 (MAD 2.1 kcal/mol) hybrid functionals are recommended. The double-hybrid functionals PWPB95 (MAD 1.6 kcal/mol) and B2K-PLYP (MAD 1.8 kcal/mol) did perform slightly better but this has to be balanced by their increased computational cost.


2003 ◽  
Vol 118 (3) ◽  
pp. 1044-1053 ◽  
Author(s):  
M. van Faassen ◽  
P. L. de Boeij ◽  
R. van Leeuwen ◽  
J. A. Berger ◽  
J. G. Snijders

2004 ◽  
Vol 18 (07) ◽  
pp. 1055-1067 ◽  
Author(s):  
K. KARLSSON ◽  
F. ARYASETIAWAN

We derive a simplified Bethe–Salpeter equation for calculating optical absorption based on the assumption of a local electron–hole interaction. The original four-point equation for the kernel is reduced to a two-point one. A connection to the exchange–correlation kernel in time-dependent density functional theory can be established. The resulting fxc is found to be -W/2 where W contains only the short-range (local) part of the Coulomb screened interaction. This simple approximation was successfully applied to optical absorption spectra of some excitonic crystals, reproducing not only the continuum excitons but also the bound ones.


2021 ◽  
Author(s):  
Mojtaba Alipour ◽  
Parisa Fallahzadeh

Density functional theory formalisms of energy partitioning schemes are utilized to find out what energetic components govern interactions in halogenated complexes.


2006 ◽  
Vol 84 (2) ◽  
pp. 115-120 ◽  
Author(s):  
G Y Gao ◽  
K L Yao ◽  
Z L Liu

First-principles calculations of the electronic structure are performed for cubic BaTbO3 using the plane-wave pseudopotential method within the framework of density functional theory and using the generalized gradient approximation for the exchange-correlation potential. Our calculations show that cubic BaTbO3 is metallic, and that this metallic character is mainly governed by the Tb 4f electrons and the hybridization between the Tb 5d and O 2p states. From the analysis of the density of states, band structure, and charge density contour, we find that the chemical bonding between Tb and O is covalent while that between Ba and TbO3 is ionic. PACS Nos.: 71.15.Mb, 71.20.-b


Sign in / Sign up

Export Citation Format

Share Document