scholarly journals Automatic Identification of Calcareous Lithologies Using Support Vector Machines, Borehole Logs and Fractal Dimension of Borehole Electrical Imaging

2018 ◽  
Vol 22 (2) ◽  
pp. 75-82 ◽  
Author(s):  
Jorge Alberto Leal ◽  
Luis Hernan Ochoa ◽  
Carmen Cecilia Contreras

In this research algorithms of support vector machine (SVM) and a logic function were applied to identify automatically sections of carbonate rocks in wells located in the former Barco Concession, Catatumbo Basin - Colombia. During training stages the SVMs use neutron, photoelectric factor and gamma ray logs as input; also mean and variance of resistivity acquired for image tool and fractal dimension of resistive images. The first SVM employs in the training stage intervals manually interpreted of fossiliferous limestone, performed by a specialized geologist integrating information of core-logs correlation of a pilot well; afterwards, in classification stages, this SVM automatically recognizes intervals with fossiliferous limestone only using logs data of any well of the field. The second SVM was also trained with nuclear logs, resistivity and fractal dimension, but in this case, with information of intervals composed of calcareous shales interbedded with limestone, recognizing automatically these rock associations during classification stage without interpretations of a geologist as input data. Additionally, a logic function was applied to intervals with photoelectric factor ≥ 4 and all sections not classified by the SVMs were grouped as laminated calcareous rocks. The SVMs and logic function show accuracy of 98.76 %, 94.02 % and 94.60 % respectively in six evaluated wells and might be applied to other wells in the field that have the same dataset. This methodology is highly dependent of the data quality and all intervals affected by bad borehole condition have to be removed prior its application in order to avoid wrong interpretations. Finally, the whole model has to be recalibrated to be applied in other fields of the basin.

2016 ◽  
Vol 61 (1) ◽  
pp. 87-94 ◽  
Author(s):  
Sridhar Poosapadi Arjunan ◽  
Dinesh Kant Kumar ◽  
Jayadeva J.

Abstract Identifying functional handgrip patterns using surface electromygram (sEMG) signal recorded from amputee residual muscle is required for controlling the myoelectric prosthetic hand. In this study, we have computed the signal fractal dimension (FD) and maximum fractal length (MFL) during different grip patterns performed by healthy and transradial amputee subjects. The FD and MFL of the sEMG, referred to as the fractal features, were classified using twin support vector machines (TSVM) to recognize the handgrips. TSVM requires fewer support vectors, is suitable for data sets with unbalanced distributions, and can simultaneously be trained for improving both sensitivity and specificity. When compared with other methods, this technique resulted in improved grip recognition accuracy, sensitivity, and specificity, and this improvement was significant (κ=0.91).


2016 ◽  
Vol 36 (3) ◽  
pp. 125 ◽  
Author(s):  
Jorge Alberto Leal ◽  
Luis Hernán Ochoa ◽  
Jerson Andres García

The purpose of this research is to apply a new approach to identify natural fractures in wells in a hydrocarbon reservoir using resistive image logs, fractal dimension and support vector machines (SVMs). The stratigraphic sequence investigated by each well is composed of Cretaceous calcareous rocks from the Catatumbo Basin, Colombia. The box counting method was applied to image logs in order to generate a curve representing variations of fractal dimension in these images throughout each well. The arithmetic mean of fractal dimension showed values ranging from 1,70 to 1,72 at the mineralized fracture intervals, and from 1,72 to 1,76 at the open fracture intervals. Morphological classification between open and mineralized natural fractures is performed using corelogs integration in a pilot well. Fractal dimension of images along with gamma rays and resistivity logs were employed as the input dataset of a SVM model identifying intervals with natural open fractures automatically, shortly after logs acquisition and previous to its interpretation by specialists. Although final results were affected by borehole conditions and logs quality, the SVM model showedaccuracy between 72,3% and 82,2% in 5 wells evaluated in the studied field.


Author(s):  
Teng Zhang ◽  
Zhi-Hua Zhou

Semi-supervised support vector machines is an extension of standard support vector machines with unlabeled instances, and the goal is to find a label assignment of the unlabeled instances, so that the decision boundary has the maximal \textit{minimum margin} on both the original labeled instances and unlabeled instances. Recent studies, however, disclosed that maximizing the minimum margin does not necessarily lead to better performance, and instead, it is crucial to optimize the \textit{margin distribution}. In this paper, we propose a novel approach SODM (Semi-supervised Optimal margin Distribution Machine), which tries to assign the label to unlabeled instances and achieve optimal margin distribution simultaneously. Specifically, we characterize the margin distribution by the first- and second-order statistics, i.e., the margin mean and variance, and extend a stochastic mirror prox method to solve the resultant minimax problem. Extensive experiments on UCI data sets show that SODM is significantly better than compared methods, which verifies the superiority of optimal margin distribution learning.


Sign in / Sign up

Export Citation Format

Share Document