scholarly journals COMPUTATIONAL EFFICIENCY FOR OPTIMIZATION PROBLEMS OF REVOLUTION SHELL S WITH FLUTTER CONSTRA INTS

2015 ◽  
Vol 25 (4) ◽  
pp. 063-071
Author(s):  
M. V. Chugunov ◽  
◽  
N. D. Kuzmichev ◽  
I. N. Polunina
2012 ◽  
Vol 5 (4) ◽  
pp. 3325-3342
Author(s):  
V. Yadav ◽  
A. M. Michalak

Abstract. Addressing a variety of questions within Earth science disciplines entails the inference of the spatio-temporal distribution of parameters of interest based on observations of related quantities. Such estimation problems often represent inverse problems that are formulated as linear optimization problems. Computational limitations arise when the number of observations and/or the size of the discretized state space become large, especially if the inverse problem is formulated in a probabilistic framework and therefore aims to assess the uncertainty associated with the estimates. This work proposes two approaches to lower the computational costs and memory requirements for large linear space-time inverse problems, taking the Bayesian approach for estimating carbon dioxide (CO2) emissions and uptake (a.k.a. fluxes) as a prototypical example. The first algorithm can be used to efficiently multiply two matrices, as long as one can be expressed as a Kronecker product of two smaller matrices, a condition that is typical when multiplying a sensitivity matrix by a covariance matrix in the solution of inverse problems. The second algorithm can be used to compute a posteriori uncertainties directly at aggregated spatio-temporal scales, which are the scales of most interest in many inverse problems. Both algorithms have significantly lower memory requirements and computational complexity relative to direct computation of the same quantities (O(n2.5) vs. O(n3)). For an examined benchmark problem, the two algorithms yielded a three and six order of magnitude increase in computational efficiency, respectively, relative to direct computation of the same quantities. Sample computer code is provided for assessing the computational and memory efficiency of the proposed algorithms for matrices of different dimensions.


2020 ◽  
Vol 19 (1) ◽  
pp. 43-78 ◽  
Author(s):  
Mikhail Medvedev ◽  
Vladimir Kostjukov ◽  
Viacheslav Pshikhopov

The paper considers the problem of planning a mobile robot movement in a conflict environment, which is characterized by the presence of areas that impede the robot to complete the tasks. The main results of path planning in the conflict environment are considered. Special attention is paid to the approaches based on the risk functions and probabilistic methods. The conflict areas, which are formed by point sources that create in the general case asymmetric fields of a continuous type, are observed. A probabilistic description of such fields is proposed, examples of which are the probability of detection or defeat of a mobile robot. As a field description, the concept of characteristic probability function of the source is introduced; which allows us to optimize the movement of the robot in the conflict environment. The connection between the characteristic probability function of the source and the risk function, which can be used to formulate and solve simplified optimization problems, is demonstrated. The algorithm for mobile robot path planning that ensures the given probability of passing the conflict environment is being developed. An upper bound for the probability of the given environment passing under fixed boundary conditions is obtained. A procedure for optimizing the robot path in the conflict environment is proposed, which is characterized by higher computational efficiency achieved by avoiding the search for an exact optimal solution to a suboptimal one. A procedure is proposed for optimizing the robot path in the conflict environment, which is characterized by higher computational efficiency achieved by avoiding the search for an exact optimal solution to a suboptimal one. The proposed algorithms are implemented in the form of a software simulator for a group of ground-based robots and are studied by numerical simulation methods.


2017 ◽  
Vol 20 (60) ◽  
pp. 20
Author(s):  
Christopher Expósito-Izquierdo

This paper summarizes the main contributions of the Ph.D. thesis of Christopher Exp\'osito-Izquierdo. This thesis seeks to develop a wide set of intelligent heuristic and meta-heuristic algorithms aimed at solving some of the most highlighted optimization problems associated with the transshipment and storage of containers at conventional maritime container terminals. Under the premise that no optimization technique can have a better performance than any other technique under all possible assumptions, the main point of interest in the domain of maritime logistics is to propose optimization techniques superior in terms of effectiveness and computational efficiency to previous proposals found in the scientific literature when solving individual optimization problems under realistic scenarios. Simultaneously, these optimization techniques should be enough competitive to be potentially implemented in practice. }}


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Guirong Dong ◽  
Chengyang Liu ◽  
Yijie Liu ◽  
Ling Wu ◽  
Xiaoan Mao ◽  
...  

With rapid development of advanced manufacturing technologies and high demands for innovative lightweight constructions to mitigate the environmental and economic impacts, design optimization has attracted increasing attention in many engineering subjects, such as civil, structural, aerospace, automotive, and energy engineering. For nonconvex nonlinear constrained optimization problems with continuous variables, evaluations of the fitness and constraint functions by means of finite element simulations can be extremely expensive. To address this problem by algorithms with sufficient accuracy as well as less computational cost, an extended multipoint approximation method (EMAM) and an adaptive weighting-coefficient strategy are proposed to efficiently seek the optimum by the integration of metamodels with sequential quadratic programming (SQP). The developed EMAM stems from the principle of the polynomial approximation and assimilates the advantages of Taylor’s expansion for improving the suboptimal continuous solution. Results demonstrate the superiority of the proposed EMAM over other evolutionary algorithms (e.g., particle swarm optimization technique, firefly algorithm, genetic algorithm, metaheuristic methods, and other metamodeling techniques) in terms of the computational efficiency and accuracy by four well-established engineering problems. The developed EMAM reduces the number of simulations during the design phase and provides wealth of information for designers to effectively tailor the parameters for optimal solutions with computational efficiency in the simulation-based engineering optimization problems.


2020 ◽  
pp. 43-78
Author(s):  
Mikhail Medvedev ◽  
Vladimir Kostjukov ◽  
Viacheslav Pshikhopov

The paper considers the problem of planning a mobile robot movement in a conflict environment, which is characterized by the presence of areas that impede the robot to complete the tasks. The main results of path planning in the conflict environment are considered. Special attention is paid to the approaches based on the risk functions and probabilistic methods. The conflict areas, which are formed by point sources that create in the general case asymmetric fields of a continuous type, are observed. A probabilistic description of such fields is proposed, examples of which are the probability of detection or defeat of a mobile robot. As a field description, the concept of characteristic probability function of the source is introduced; which allows us to optimize the movement of the robot in the conflict environment. The connection between the characteristic probability function of the source and the risk function, which can be used to formulate and solve simplified optimization problems, is demonstrated. The algorithm for mobile robot path planning that ensures the given probability of passing the conflict environment is being developed. An upper bound for the probability of the given environment passing under fixed boundary conditions is obtained. A procedure for optimizing the robot path in the conflict environment is proposed, which is characterized by higher computational efficiency achieved by avoiding the search for an exact optimal solution to a suboptimal one. A procedure is proposed for optimizing the robot path in the conflict environment, which is characterized by higher computational efficiency achieved by avoiding the search for an exact optimal solution to a suboptimal one. The proposed algorithms are implemented in the form of a software simulator for a group of ground-based robots and are studied by numerical simulation methods.


2019 ◽  
Vol 2 (3) ◽  
pp. 508-517
Author(s):  
FerdaNur Arıcı ◽  
Ersin Kaya

Optimization is a process to search the most suitable solution for a problem within an acceptable time interval. The algorithms that solve the optimization problems are called as optimization algorithms. In the literature, there are many optimization algorithms with different characteristics. The optimization algorithms can exhibit different behaviors depending on the size, characteristics and complexity of the optimization problem. In this study, six well-known population based optimization algorithms (artificial algae algorithm - AAA, artificial bee colony algorithm - ABC, differential evolution algorithm - DE, genetic algorithm - GA, gravitational search algorithm - GSA and particle swarm optimization - PSO) were used. These six algorithms were performed on the CEC’17 test functions. According to the experimental results, the algorithms were compared and performances of the algorithms were evaluated.


Sign in / Sign up

Export Citation Format

Share Document