scholarly journals Magnetohydrodynamic Shocks and Solitons in the Solar Atmosphere: Recent Challenges in Observations and Theory

Author(s):  
T. V. Zaqarashvili
1994 ◽  
Vol 144 ◽  
pp. 1-9
Author(s):  
A. H. Gabriel

The development of the physics of the solar atmosphere during the last 50 years has been greatly influenced by the increasing capability of observations made from space. Access to images and spectra of the hotter plasma in the UV, XUV and X-ray regions provided a major advance over the few coronal forbidden lines seen in the visible and enabled the cooler chromospheric and photospheric plasma to be seen in its proper perspective, as part of a total system. In this way space observations have stimulated new and important advances, not only in space but also in ground-based observations and theoretical modelling, so that today we find a well-balanced harmony between the three techniques.


1977 ◽  
Vol 36 ◽  
pp. 143-180 ◽  
Author(s):  
J.O. Stenflo

It is well-known that solar activity is basically caused by the Interaction of magnetic fields with convection and solar rotation, resulting in a great variety of dynamic phenomena, like flares, surges, sunspots, prominences, etc. Many conferences have been devoted to solar activity, including the role of magnetic fields. Similar attention has not been paid to the role of magnetic fields for the overall dynamics and energy balance of the solar atmosphere, related to the general problem of chromospheric and coronal heating. To penetrate this problem we have to focus our attention more on the physical conditions in the ‘quiet’ regions than on the conspicuous phenomena in active regions.


1994 ◽  
Vol 140 ◽  
pp. 222-223
Author(s):  
M. Barsony ◽  
N. Z. Scoville ◽  
C. J. Chandler

AbstractWe report the results of CO J=l—+0 mapping of portions of the blue outflow lobe of L1551 with ~ 7” (N-S) × 4” (E-W) resolution, obtained with the 3-element OVRO millimeter array. Comparison of our interferometer mosaic with lower resolution single-dish data shows that we resolve the strongest single-dish emission regions into filamentary structures, such as are characteristic of shock fronts mapped via their near-infrared H2 emission in other outflow sources.


1975 ◽  
Vol 68 ◽  
pp. 239-241
Author(s):  
John C. Brown ◽  
H. F. Van Beek

SummaryThe importance and difficulties of determining the height of hard X-ray sources in the solar atmosphere, in order to distinguish source models, have been discussed by Brown and McClymont (1974) and also in this Symposium (Brown, 1975; Datlowe, 1975). Theoretical predictions of this height, h, range between and 105 km above the photosphere for different models (Brown and McClymont, 1974; McClymont and Brown, 1974). Equally diverse values have been inferred from observations of synchronous chromospheric EUV bursts (Kane and Donnelly, 1971) on the one hand and from apparently behind-the-limb events (e.g. Datlowe, 1975) on the other.


2019 ◽  
Vol 4 (1) ◽  
pp. 19-20 ◽  
Author(s):  
Eugene N. Parker
Keyword(s):  

2014 ◽  
Vol 10 (S305) ◽  
pp. 35-41
Author(s):  
Sarah A. Jaeggli

AbstractNOAA 11035 was a highly sheared active region that appeared in December 2009 early in the new activity cycle. The leading polarity sunspot developed a highly unusual feature in its penumbra, an opposite polarity pore with a strong magnetic field in excess of 3500 G along one edge, which persisted for several days during the evolution of the region. This region was well observed by both space- and ground-based observatories, including Hinode, FIRS, TRACE, and SOHO. These observations, which span wavelength and atmospheric regimes, provide a complete picture of this unusual feature which may constitute a force-free magnetic field in the photosphere which is produced by the reconnection of magnetic loops low in the solar atmosphere.


Sign in / Sign up

Export Citation Format

Share Document