Quantifying Capillary Trapping on Ultimate Coal Seam Gas Recovery: A Laboratory Study

Author(s):  
Yiran Zhu ◽  
Zhang Shi ◽  
Huilin Xing ◽  
Shuai Gao ◽  
Zhongwei Chen
2020 ◽  
Vol 83 ◽  
pp. 103588
Author(s):  
Yiran Zhu ◽  
Huilin Xing ◽  
Victor Rudolph ◽  
Zhongwei Chen

Energy ◽  
2019 ◽  
Vol 188 ◽  
pp. 116115 ◽  
Author(s):  
Jia Lin ◽  
Ting Ren ◽  
Yuanping Cheng ◽  
Jan Nemcik ◽  
Gongda Wang

2015 ◽  
Vol 60 (4) ◽  
pp. 1013-1028 ◽  
Author(s):  
Lei Zhang ◽  
Naj Aziz ◽  
Ting Ren ◽  
Jan Nemcik ◽  
Shihao Tu

Abstract Several mines operating in the Bulli seam of the Sydney Basin in NSW, Australia are experiencing difficulties in reducing gas content within the available drainage lead time in various sections of the coal deposit. Increased density of drainage boreholes has proven to be ineffective, particularly in sections of the coal seam rich in CO2. Plus with the increasing worldwide concern on green house gas reduction and clean energy utilisation, significant attention is paid to develop a more practical and economical method of enhancing the gas recovery from coal seams. A technology based on N2 injection was proposed to flush the Coal Seam Gas (CSG) out of coal and enhance the gas drainage process. In this study, laboratory tests on CO2 and CH4 gas recovery from coal by N2 injection are described and results show that N2 flushing has a significant impact on the CO2 and CH4 desorption and removal from coal. During the flushing stage, it was found that N2 flushing plays a more effective role in reducing adsorbed CH4 than CO2. Comparatively, during the desorption stage, the study shows gas desorption after N2 flushing plays a more effective role in reducing adsorbed CO2 than CH4.


2011 ◽  
Author(s):  
Alireza Salmachi ◽  
Manouchehr Haghighi ◽  
Pavel G. Bedrikovetsky ◽  
Chaoshui Xu

2012 ◽  
Vol 9 (5) ◽  
pp. 425 ◽  
Author(s):  
Graeme E. Batley ◽  
Rai S. Kookana

Environmental context Coal seam gas reserves are likely to make a major contribution to future energy needs. However, the new technology for exploiting these reserves, termed hydraulic fracturing, raises several environmental issues. We discuss the research required to assess the ecological risks from gas recovery. Abstract Coal seam gas reserves represent a major contribution to energy needs, however, gas recovery by hydraulic fracturing (fracking or fraccing), requires management to minimise any environmental effects. Although the industry is adapting where possible to more benign fracking chemicals, there is still a lack of information on exposure to natural and added chemicals, and their fate and ecotoxicity in both the discharged produced and flow-back waters. Geogenic contaminants mobilised from the coal seams during fracking may add to the mixture of chemicals with the potential to affect both ground and surface water quality. The research needs to better assess the ecological risks from gas recovery are discussed.


2020 ◽  
Vol 24 (6 Part B) ◽  
pp. 3971-3978
Author(s):  
Teng Teng ◽  
Xiao-Yan Zhu ◽  
Xiang-Yang Zhang ◽  
Peng-Fei Chen ◽  
Yu-Ming Wang ◽  
...  

The coal seam gas recovery in deep reservoirs often meets high temperature. The change of temperature can greatly influence gas sorption, and couples heat transfer with coal deformation and gas-flow. This paper modifies the conventional Langmuir adsorption equation into a non-isothermal adsorption equation with a set of experimental data. After then, a fully coupled thermo-hydro-mechanical model of coal deformation, gas-flow and heat transfer is established. By using a finite element approach of COMSOL multi-physics, a numerical simulation of coal seam gas recovery from high temperature reservoir is subsequently implemented. The results show that the gas pressure and temperature decrease with production time and increase with the distance from production well, the reservoir permeability decreases with production time due to the compaction of increasing effective stress to coal fracture network, the cumulative gas production increases with production time exponentially whereas the production efficiency decreases negative exponentially, that the gas production in earlier 10 years accounts for 80% of the total production in 30 years. Our fully coupled thermo-hydro-mechanical model can improve the current understanding of coal seam gas recovery from high temperature reservoirs.


Sign in / Sign up

Export Citation Format

Share Document