Thermal Gas Recovery from Coal Seam Gas Reservoirs Using Underground Coal Gasification

2011 ◽  
Author(s):  
Alireza Salmachi ◽  
Manouchehr Haghighi ◽  
Pavel G. Bedrikovetsky ◽  
Chaoshui Xu
2009 ◽  
Vol 49 (2) ◽  
pp. 590
Author(s):  
Paul Careless

An overview will be presented of the Queensland petroleum and environmental legislation relating to the exploration for and production of coal seam gas with three key focusses: a discussion of the statutory classification of coal seam gas as petroleum and the relevant statutory regulatory regime, which applies particularly with respect to competing or coincident minerals such as coal and coal gasification products; a description of the principal features and requirements for both exploration and production tenures, including land access and compensation obligations. Reference will be made to associated environmental authorities and licences, and particular environmental issues such as the containment and disposal of water will be brought to the surface as a part of production operations; and, how the legislation has sought to deal with the coordination of exploration and production operations between coal seam gas, conventional coal mining and the more recent technology of underground coal gasification with respect to the same areas. The paper will conclude with a discussion of areas of ongoing concern and difficulty including the ability to transport associated water through pipeline systems, land access and gas storage in natural underground reservoirs.


2018 ◽  
Vol 223 ◽  
pp. 82-92 ◽  
Author(s):  
Fa-qiang Su ◽  
Akihiro Hamanaka ◽  
Ken-ichi Itakura ◽  
Wenyan Zhang ◽  
Gota Deguchi ◽  
...  

2020 ◽  
Vol 83 ◽  
pp. 103588
Author(s):  
Yiran Zhu ◽  
Huilin Xing ◽  
Victor Rudolph ◽  
Zhongwei Chen

2017 ◽  
Vol 25 ◽  
pp. 118-127
Author(s):  
Vasyl Lozynskyi

The purpose of this paper is substantiating of efficiency during application of borehole underground coal gasification technology based on target coal seam geology. Comprehensive methodology that included analytical calculation is implemented in the work. To determine the efficiency of coal seam gasification in faulting areas, an economic calculation method was developed. The obtained conditions of coal seam allow to provide rational order of mine workings. Conclusions regarding the implementation of the offered method are made on the basis of undertaken investigations. The obtained results with sufficient accuracy in practical application will allow consume coal reserves in the faulting zones using environmentally friendly conversion technology to obtain power and chemical generator gas, chemicals and heat.


2019 ◽  
Vol 291 ◽  
pp. 137-147
Author(s):  
Volodymyr Falshtynskyi ◽  
Roman Dychkovskyi ◽  
Pavlo Saik ◽  
Vasyl Lozynskyi ◽  
Victor Sulaiev ◽  
...  

The authors of the paper consider the concept of further prospective development of mining enterprises. The basis of this concept are scientific results obtained during the study of physical and chemical processes of solids conversion into the gaseous state: coal → gaseous fuels. It was established that the main base of development of mining regions is a mining power-chemical complex. The basic segment of which is a well underground coal gasification station. It is established that increase of indicators of efficient operation of the station from gasification is possible by synthesis of technical and technological decisions on the use of coal seam energy. When coal gasification is over, the gasifier passes into a mode of thermal generator with the use of alothermal technique to remove heat and thermic decomposition products from the degassed space of the gasifier. Generator gas at its initial temperature (1100 – 1300oС) around an underground gasifier creates a powerful heat boiler with a temperature regime of 200 – 300oС. It was established that at work of six gasifiers on a coal seam with thickness of 1.0 m with geometrical parameters each at a width of 30 m and at the length of 450 m energy-thermal power will be 237.8 MW. At the same time, additional energy resources can be obtained by involving segments of alternative forms of energy supply to the life cycle of the mining enterprise.


1975 ◽  
Vol 15 (05) ◽  
pp. 425-436 ◽  
Author(s):  
C.F. Magnani ◽  
S.M. Farouq Ali

Abstract This investigation focuses on mathematical modeling of the process of underground gasification of coal by the stream method. A one-dimensional, steady-state model consisting of five coupled differential equations was formulated, and the solution, extracted analytically, was used to develop closed-form expressions for the parameters influencing coal gasification. The model then was used for interpreting field performance curves, predicting the results of The performance curves, predicting the results of The field tests, and ascertaining the over-all process sensitivity to the input variables. The usefulness of the model was shown by establishing the parameters influencing the success or failure of parameters influencing the success or failure of an underground gasification project. Introduction One method of eliminating many of the technological and environmental difficulties encountered during the production of synthetic gas through aboveground coal gasification involves gasifying cod in situ. This process, known as underground coal gasification, was first proposed in 1868 by Sir William Siemens and is based on the controlled combustion of coal in situ. This in-situ combustion results in the production of an artificial or synthetic gas that is rich in carbon dioxide, carbon monoxide, hydrogen, and hydrocarbon gases. Despite the fact that reaction stoichiometry is a moot element of underground coal gasification, it is nonetheless believed thatcarbon dioxide is formed by the partial oxidation of coal,carbon monoxide is generated by the subsequent reduction of carbon dioxide, andthe hydrogen and hydrocarbon gases result from the water-gas reaction and carbonization of coal, respectively. To effect the controlled combustion of coal in situ, the coal seam first must be ignited and a means must be provided for supporting combustion (through injection of a suitable gasification agent) and producing the gases generated underground. Fig. 1 presents a schematic diagram of an underground gasification system that complies with these requirements. This approach to gasifying coal is known as the stream or channel method and necessitates drilling two parallel galleries, one serving as an injection gas inlet and the other as a producer gas outlet. These wells are then linked by a borehole drilled horizontally through the coal seam. Ignition occurs in the coal seam at the gas inlet and proceeds in the direction of flow. The combustion front thus generated moves essentially perpendicular to the direction of gas flow. perpendicular to the direction of gas flow.Since the technological inception of underground gasification, over 1,500 publications have appeared in the literature that bear testimony to the absence of a complete, legitimate, theoretical analysis of the underground gasification process. Given this observation, it is the basis of this paper that progress in underground coal-gasification research progress in underground coal-gasification research has suffered from the absence of "interpretative theory"; that is, it has suffered from a lack of logical, physical, and mathematical analysis of the governing and underlying aerothermochemical principles. The difficulties in formulating a principles. The difficulties in formulating a mathematical model adequately describing the numerous phenomena involved during coal gasification are indeed formidable. SPEJ P. 425


2015 ◽  
Author(s):  
Alireza Keshavarz ◽  
Alexander Badalyan ◽  
Themis Carageorgos ◽  
Pavel Bedrikovetsky ◽  
Ray Johnson

2015 ◽  
Vol 60 (4) ◽  
pp. 1013-1028 ◽  
Author(s):  
Lei Zhang ◽  
Naj Aziz ◽  
Ting Ren ◽  
Jan Nemcik ◽  
Shihao Tu

Abstract Several mines operating in the Bulli seam of the Sydney Basin in NSW, Australia are experiencing difficulties in reducing gas content within the available drainage lead time in various sections of the coal deposit. Increased density of drainage boreholes has proven to be ineffective, particularly in sections of the coal seam rich in CO2. Plus with the increasing worldwide concern on green house gas reduction and clean energy utilisation, significant attention is paid to develop a more practical and economical method of enhancing the gas recovery from coal seams. A technology based on N2 injection was proposed to flush the Coal Seam Gas (CSG) out of coal and enhance the gas drainage process. In this study, laboratory tests on CO2 and CH4 gas recovery from coal by N2 injection are described and results show that N2 flushing has a significant impact on the CO2 and CH4 desorption and removal from coal. During the flushing stage, it was found that N2 flushing plays a more effective role in reducing adsorbed CH4 than CO2. Comparatively, during the desorption stage, the study shows gas desorption after N2 flushing plays a more effective role in reducing adsorbed CO2 than CH4.


Sign in / Sign up

Export Citation Format

Share Document