Associative rings in which nilpotents form an ideal

2019 ◽  
Vol 56 (2) ◽  
pp. 177-184
Author(s):  
Orest D. Artemovych

Abstract It is shown that if N(R) is a Lie ideal of R (respectively Jordan ideal and R is 2-torsion-free), then N(R) is an ideal. Also, it is presented a characterization of Noetherian NR rings with central idempotents (respectively with the commutative set of nilpotent elements, the Abelian unit group, the commutative commutator set).

2016 ◽  
Vol 30 (1) ◽  
pp. 219-229
Author(s):  
Mateusz Woronowicz

AbstractAlmost complete description of abelian groups (A, +, 0) such that every associative ring R with the additive group A satisfies the condition: every subgroup of A is an ideal of R, is given. Some new results for SR-groups in the case of associative rings are also achieved. The characterization of abelian torsion-free groups of rank one and their direct sums which are not nil-groups is complemented using only elementary methods.


2020 ◽  
Vol 9 (2) ◽  
pp. 80-92
Author(s):  
Chenar Abdul Kareem Ahmed

T.K. Kwak and Y. Lee called a ring R satisfy the commutativity of nilpotent elements at zero[1] if ab = 0 for a, b ∈ N(R) implies ba = 0. For simplicity, a ring R is called CNZ if it satisfies the commutativity of nilpotent elements at zero. In this paper we study an extension of a CNZ ring with its endomorphism. An endomorphism α of a ring R is called strong right ( resp., left) CNZ if whenever aα(b) = 0(resp., α(a)b = 0 ) for a, b ∈ N(R) ba = 0. A ring R is called strong right (resp., left) α-CNZ if there exists a strong right (resp., left) CNZ endomorphism α of R, and the ring R is called strong α- CNZ if R is both strong left and right α- CNZ. Characterization of strong α- CNZ rings and their related properties including extensions are investigated . In particular, it’s shown that a ring R is reduced if and only if U2(R) is a CNZ ring. Furthermore extensions of strong α- CNZ rings are studied.


Author(s):  
Vincenzo De Filippis ◽  
Nadeem UR Rehman ◽  
Abu Zaid Ansari

LetRbe a 2-torsion free ring and letLbe a noncentral Lie ideal ofR, and letF:R→RandG:R→Rbe two generalized derivations ofR. We will analyse the structure ofRin the following cases: (a)Ris prime andF(um)=G(un)for allu∈Land fixed positive integersm≠n; (b)Ris prime andF((upvq)m)=G((vrus)n)for allu,v∈Land fixed integersm,n,p,q,r,s≥1; (c)Ris semiprime andF((uv)n)=G((vu)n)for allu,v∈[R,R]and fixed integern≥1; and (d)Ris semiprime andF((uv)n)=G((vu)n)for allu,v∈Rand fixed integern≥1.


1985 ◽  
Vol 50 (3) ◽  
pp. 743-772 ◽  
Author(s):  
Fritz Grunewald ◽  
Daniel Segal

This paper is a continuation of our previous work in [12]. The results, and some applications, have been described in the announcement [13]; it may be useful to discuss here, a little more fully, the nature and purpose of this work.We are concerned basically with three kinds of algorithmic problem: (1) isomorphism problems, (2) “orbit problems”, and (3) “effective generation”.(1) Isomorphism problems. Here we have a class of algebraic objects of some kind, and ask: is there a uniform algorithm for deciding whether two arbitrary members of are isomorphic? In most cases, the answer is no: no such algorithm exists. Indeed this has been one of the most notable applications of methods of mathematical logic in algebra (see [26, Chapter IV, §4] for the case where is the class of all finitely presented groups). It turns out, however, that when consists of objects which are in a certain sense “finite-dimensional”, then the isomorphism problem is indeed algorithmically soluble. We gave such algorithms in [12] for the following cases: = {finitely generated nilpotent groups}; = {(not necessarily associative) rings whose additive group is finitely generated}; = {finitely Z-generated modules over a fixed finitely generated ring}.Combining the methods of [12] with his own earlier work, Sarkisian has obtained analogous results with the integers replaced by the rationals: in [20] and [21] he solves the isomorphism problem for radicable torsion-free nilpotent groups of finite rank and for finite-dimensional Q-algebras.


1998 ◽  
Vol 50 (2) ◽  
pp. 401-411 ◽  
Author(s):  
Yuanlin Li

AbstractIn this paper, we first show that the central height of the unit group of the integral group ring of a periodic group is at most 2. We then give a complete characterization of the n-centre of that unit group. The n-centre of the unit group is either the centre or the second centre (for n ≥ 2).


2015 ◽  
Vol 39 (2) ◽  
pp. 249-255
Author(s):  
Md Mizanor Rahman ◽  
Akhil Chandra Paul

The authors extend and generalize some results of previous workers to ?-prime ?-ring. For a ?-square closed Lie ideal U of a 2-torsion free ?-prime ?-ring M, let d: M ?M be an additive mapping satisfying d(u?u)=d(u)? u + u?d(u) for all u ? U and ? ? ?. The present authors proved that d(u?v) = d(u)?v + u?d(v) for all u, v ? U and ?? ?, and consequently, every Jordan derivation of a 2-torsion free ?-prime ?-ring M is a derivation of M.Journal of Bangladesh Academy of Sciences, Vol. 39, No. 2, 249-255, 2015


2017 ◽  
Vol 36 ◽  
pp. 1-5
Author(s):  
Akhil Chandra Paul ◽  
Md Mizanor Rahman

In this paper we prove that, if U is a s-square closed Lie ideal of a 2-torsion free s-prime ring R and  d: R(R is an additive mapping satisfying d(u2)=d(u)u+ud(u) for all u?U then d(uv)=d(u)v+ud(v) holds for all  u,v?UGANIT J. Bangladesh Math. Soc.Vol. 36 (2016) 1-5


2016 ◽  
Vol 53 (4) ◽  
pp. 1105-1112
Author(s):  
Tevfik Bilgin ◽  
Omer Kusmus ◽  
Richard M. Low
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document