scholarly journals Determination of four naphthalenediols in cosmetic samples by sweeping-micellar electrokinetic chromatography and a comparison with HPLC

Author(s):  
Qian Wang ◽  
Xiaobin Li ◽  
Zhihan Zheng ◽  
Huitao Liu ◽  
Yuan Gao

Abstract A sweeping micellar electrokinetic chromatography (sweeping-MEKC) method was developed for the determination of 1,7-naphthalenediol, 2,3-naphthalenediol, 1,5-naphthalenediol and 2,7-naphthalenediol in cosmetics. Several parameters affecting sweeping-MEKC method were studied systematically and the separation conditions were optimized as 20 mM NaH2PO4–110 mM SDS and 40% (v/v) MeOH (pH 2.4), with −22 kV applied voltage and UV detection at 230 nm. The sample matrix is 60 mmol L−1 NaH2PO4 and sample introduction was performed at 3 psi for 6 s. Separation of the four naphthalenediols was completed in less than 17 min. Limit of detection (LOD) and limit of quantitation (LOQ) are 0.0045∼0.0094 μg mL−1 and 0.015∼0.031 μg mL−1. Linear relationship (r 2 > 0.999) is satisfactory at the range of 0.1–10 μg mL−1. The developed method has been successfully applied to the determination of the four naphthalenediols in real cosmetic samples, with recoveries in foundation, sun cream and lotion in the range of 92.3%∼106.8% and relative standard deviation (RSD) less than 4.15%. A HPLC method described in the National Standards of the People’s Republic of China was carried out for the comparison with the proposed method. The results showed that the proposed sweeping-MEKC method has the advantages of fast, low cost with comparative sensitivity.

2017 ◽  
Vol 9 (2) ◽  
pp. 34
Author(s):  
N. Balaji ◽  
Sayeeda Sultana

Objective: An efficient, high performance liquid chromatographic method has been developed and validated for the quantification of related substances in pioglitazone hydrochloride drug substance.Methods: This method includes the determination of three related substances in pioglitazone hydrochloride. The mobile phase A is 0.1% w/v triethylamine in water with pH 2.5 adjusted by dilute phosphoric acid. The mobile phase B is premixed and degassed mixtures of acetonitrile and methanol. The flow rate was 1 ml/min. The elution used was gradient mode. The HPLC column used for the analysis was symmetry C18 with a length of 250 mm, the internal diameter of 4.6 mm and particle size of 5.0 microns.Results: The developed method was found to be linear with the range of 0.006-250% with a coefficient of correlation 0.99. The precision study revealed that the percentage relative standard deviation was within the acceptable limit. The limit of detection and limit of quantitation of the impurities was less than 0.002%and 0.006% with respect to pioglitazone hydrochloride test concentration of 2000 µg/ml respectively. This method has been validated as per ICH guidelines Q2 (R1).Conclusion: A reliable, economical HPLC method was magnificently established for quantitative analysis of related substances of pioglitazone hydrochloride drug substance.


2015 ◽  
Vol 3 ◽  
pp. 21-26
Author(s):  
Om Prakash Sharma ◽  
Nanthanit Pholphana ◽  
Nuchanart Rangkadilok ◽  
Preeda Parkpian ◽  
Jutamaad Satayavivad

The purpose of this study was to develop a simple and sensitive high performance liquid chromatography (HPLC) method for determination of glyphosate (GP) residues in soybean grains. From soybean matrix, glyphosate was extracted with a mixture of water and methanol (4:1, v/v) from soybean samples followed by protein precipitation with equal volume of methanol. No preconcentration and further clean up of the sample were required. Pre-column derivatization was carried out with excess amount of 9- fluorenylmethyl chloroformate (FMOC-Cl) in the presence of borate buffer. The gradient program developed in this method was successfully applied to a reverse phase HPLC system with a C18 column (ACE 5 μm 4.6 x 250 mm), and eluted with a mobile phase consisting of 50 mM phosphate buffer, pH 2.5, and acetonitrile at the flow rate of 0.8 ml/min and fluorescence detection. Parameters and conditions affecting extraction, derivatization reaction and chromatographic separation were systematically examined. Linearity of the method ranged from 0.005 - 1.0 μg/ml. The correlation coefficient (r2) of calibration curve for glyphosate in soybean sample was found to be 0.99929. The limit of detection (LOD) and limit of quantitation (LOQ) values were determined to be 0.125 mg/kg and 0.25 mg/kg, respectively. Average recovery was 95.2%. Repeatability and intermediate precision calculated on the basis of peak area were excellent and showed relative standard deviation ranged from 0.15 - 1.29% and 1.15 - 3.87%, respectively. The developed method has been successfully applied for determination of glyphosate residues in soybean grains obtained from Thailand and Nepal. Soybean samples (53) from two different lots were analyzed and glyphosate residues ranged from 0.23 mg/kg to 5.06 mg/kg. Almost 50% soybean samples contained nearly consistent residue levels in both lots but in remaining samples there was a significant variation of glyphosate levels between two lots. Relatively higher residues were detected in samples from Thailand (0.27-5.06 mg/kg) compared to Nepal (0.23-0.99 mg/kg). The results suggest that the proposed method can be used to determine glyphosate residues in foods derived from soybean and other crops such as corn, cotton, wheat, etc. where glyphosate is widely applied to these crops.


2020 ◽  
Author(s):  
Sherin Farouk Hammad ◽  
Inas Abdallah ◽  
Alaa Bedair ◽  
Fotouh Mansour

Abstract Salting-out induced liquid-liquid microextraction method has been developed for plasma sample treatment before determination of alogliptin by high performance liquid chromatography with UV detection. Several parameters were optimized to achieve maximum enrichment, including type of extractant, volume of extractant, type of anion, type of cation, salt amount and pH. The optimum conditions were attained using 500 µL of acetonitrile, added to 1 mL of aqueous sample containing 250 mg of sodium chloride at pH 12. An RP-HPLC method was developed and validated according to the International Conference on Harmonization guidelines M10. The method was linear in the concentration range of 0.1 to 50 µg/mL (correlation coefficient= 0.997). The limit of detection was 19 ng/mL and limit of quantitation was 60 ng /mL. The method was accurate and precise with an average % recovery of 99.7% and a % relative standard deviation ranging between 1.5 and 2.5. These results showed that the salting-out induced liquid-liquid microextraction methods could be better than other sample preparation protocols in terms of sensitivity, easiness, solvent consumption and waste reduction.


2020 ◽  
Author(s):  
Sherin Farouk Hammad ◽  
Inas Abdallah ◽  
Alaa Bedair ◽  
Fotouh Mansour

Abstract Salting-out induced liquid-liquid microextraction method has been developed for plasma sample treatment before determination of alogliptin by high performance liquid chromatography with UV detection. Several parameters were optimized to achieve maximum enrichment, including type of extractant, volume of extractant, type of anion, type of cation, salt amount and pH. The optimum conditions were attained using 500 µL of acetonitrile, added to 1 mL of aqueous sample containing 250 mg of sodium chloride at pH 12. An RP-HPLC method was developed and validated according to the International Conference on Harmonization guidelines M10. The method was linear in the concentration range of 0.1 to 50 µg/mL (correlation coefficient= 0.997). The limit of detection was 0.019 µg/mL and limit of quantitation was 0.06 µg/mL. The method was accurate and precise with an average % recovery of 99.7% and a % relative standard deviation ranging between 1.5 and 2.5. These results showed that the salting-out induced liquid-liquid microextraction methods could be better than other sample preparation protocols in terms of sensitivity, easiness, solvent consumption and waste reduction.


Author(s):  
B. Mounika ◽  
L. Srikanth ◽  
A. Venkatesha

Objective: A reversed phase liquid chromatography was determined and validated for the estimation of Mirabegron in tablet dosage form.Methods: The validation study of RP-HPLC showed a simple, rapid, accurate, precise, reproducible results by using a stationary phase: Waters Acquity HSS T-3 C18 (100 × 2.1 mm, 1.7μm and Mobile Phase-Potassium di-hydrogen phosphate: acetone in the ratio (40:60 v/v) at PH6.0±0.02. Detection is carried out at 243 nm using UV detector.Results: The total chromatographic analysis time per sample was about 6 min with Mirabegron eluting at a retention time of 2.754. Tailing factor obtained from the standard injection is 1.6. Theoretical Plates obtained from the standard injection is 2736.7. The flow rate is 1 ml/min and linearity in the concentration range of 30-70μg/ml (R2=0.999). The precision was 0.4% the intermediate precision was 0.08%. The deliberately varied chromatographic conditions in the concentration range for the evaluation of robustness is 10-50 µg/ml, (n=3). The limit of detection (LOD) and limit of quantitation (LOQ) for Mirabegron were 0.01µg/ml and 0.05µg/ml respectively. The % recovery is 99.8 % with % R. SD of 0.09. The results proved that the optimized HPLC method fulfills these requirements within the ICH accepted limits.Conclusion: The high recovery and low relative standard deviation confirm the suitability of the proposed method for the determination of Mirabegron in tablet dosage form. 


BMC Chemistry ◽  
2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Sherin F. Hammad ◽  
Inas A. Abdallah ◽  
Alaa Bedair ◽  
Fotouh R. Mansour

AbstractSalting-out induced liquid–liquid microextraction method has been developed for plasma sample treatment before determination of alogliptin by high performance liquid chromatography with UV detection. Several parameters were optimized to achieve maximum enrichment, including type of extractant, volume of extractant, type of anion, type of cation, salt amount and pH. The optimum conditions were attained using 500 µL of acetonitrile, added to 1 mL of aqueous sample containing 250 mg of sodium chloride at pH 12. An RP-HPLC method was developed and validated according to the International Conference on Harmonization guidelines M10. The method was linear in the concentration range of 0.1 to 50 µg/mL (correlation coefficient = 0.997). The limit of detection was 0.019 µg/mL and limit of quantitation was 0.06 µg/mL. The method was accurate and precise with an average % recovery of 99.7% and a % relative standard deviation ranging between 1.5 and 2.5. These results showed that the salting-out induced liquid–liquid microextraction methods could be better than other sample preparation protocols in terms of sensitivity, easiness, solvent consumption and waste reduction.


2012 ◽  
Vol 12 (3) ◽  
pp. 268-272 ◽  
Author(s):  
Latifah K Darusman ◽  
Mohamad Rafi ◽  
Wulan Tri Wahyuni ◽  
Rizna Azrianiningsari

A new ultraviolet derivative spectrophotometry (UVDS) method has been developed for determination of reserpine in antihypertension tablets. A first-order UVDS based on the measurement of the distance between peaks to baseline (DZ) at the wavelength of 312 nm was used. Evaluation of analytical performance showed that accuracy as percentage recovery was 99.18-101.13%, precision expressed as relative standard deviation (RSD) was 1.91% and linear correlation was also obtained 0.9998 in the range of 10-50 µg/mL. Estimation of limit of detection and limit of quantitation was 0.8868 µg/mL and 2.6874 µg/mL, respectively. As a reference method, HPLC methods from United States Pharmacopiea (USP) were used. Commercially tablets available were analyzed by the two methods. The content of reserpine in tablets was found 0.2260±0.0033 mg by UVDS and 0.2301±0.0051 mg by the USP methods. The result obtained from the two methods was compared statistically using F-test and t-test and showed no significant differences between the variance and mean values of the two methods at 95% confidence level. This method was faster, easier, low cost and gave result as well as the reference method published by USP.


2020 ◽  
Author(s):  
Sherin Farouk Hammad ◽  
Inas Abdallah ◽  
Alaa Bedair ◽  
Fotouh Mansour

Abstract Salting-out induced liquid-liquid microextraction method has been developed for plasma sample treatment before determination of alogliptin by high performance liquid chromatography with UV detection. Several parameters were optimized to achieve maximum enrichment, including type of extractant, volume of extractant, type of anion, type of cation, salt amount and pH. The optimum conditions were attained using 500 µL of acetonitrile, added to 1 mL of aqueous sample containing 250 mg of sodium chloride at pH 12. An RP-HPLC method was developed and validated according to the International Conference on Harmonization guidelines M10. The method was linear in the concentration range of 0.1 to 50 µg /mL (correlation coefficient= 0.997). The limit of detection was 0.019 µg/mL and limit of quantitation was 0.06 µ g/mL. The method was accurate and precise with an average % recovery of 99.7% and a % relative standard deviation ranging between 1.5 and 2.5. These results showed that the salting-out induced liquid-liquid microextraction methods could be better than other sample preparation protocols in terms of sensitivity, easiness, solvent consumption and waste reduction.


2020 ◽  
Author(s):  
Sherin Farouk Hammad ◽  
Inas Abdallah ◽  
Alaa Bedair ◽  
Fotouh Mansour

Abstract Salting-out induced liquid-liquid microextraction method has been developed for plasma sample treatment before determination of alogliptin by high performance liquid chromatography with UV detection. Several parameters were optimized to achieve maximum enrichment including type of extractant, volume of extractant, type of anion, type of cation, salt amount and pH. The optimum conditions were achieved using 500 µL of acetonitrile, added to 1 mL of aqueous sample containing 250 mg of sodium chloride at pH 12. An RP-HPLC method was developed and validated according to the International Conference on Harmonization guidelines Q2 (R1). The method was linear in the concentration range of 0.1 to 50 µg/mL (correlation coefficient= 0.997). The limit of detection was 19 ng/mL and limit of quantitation was 60 ng /mL. The method was accurate and precise with a % recovery of 99.7% and a % relative standard deviation ranging between 1.5 and 2.5. These results showed that the salting-out induced liquid-liquid microextraction methods could be better than other sample preparation protocols in terms of sensitivity, easiness, solvent consumption and waste reduction.


Author(s):  
Dilshad Ahmad ◽  
Faisal A. Al Meshaiti ◽  
Yazeed K. Al Anazi ◽  
Osama Al Owassil ◽  
Alaa Eldeen B. Yassin

Anastrozole, an aromatase inhibitor drug, is used for the treatment of breast cancer in pre- and postmenopausal women. Anastrozole’s incorporation into nanoparticulate carriers would enhance its therapeutic performance. To perceive the exact loaded amount of drug in nanocarriers, a valid analytical method is required. The reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated by using the C18 column, 150 × 4.6 mm, 5 µm particle size, in isocratic mobile phase composed of 50:50 V/V (volume/volume) acetonitrile–phosphate buffer (pH 3) flowing at a rate of 1.0 mL/min, and a diode array detector (DAD) set at λmax = 215 nm. The validation parameters such as linearity, accuracy, specificity, precision, and robustness have proven the accuracy of the method, with the relative standard deviation percentage (% RSD) values < 2. The limit of detection of the method was found equal to 0.0150 µg/mL, and the limit of quantitation was 0.0607 µg/mL. The percent recovery of sample was in the range of 98.04–99.25%. The method has the advantage of being rapid with a drug retention time of 2.767 min, specific in terms of resolution of peaks void of interference with any of the excipients, and high reproducibility. This makes it highly applicable for quality control purposes.


Sign in / Sign up

Export Citation Format

Share Document