inhibitor drug
Recently Published Documents


TOTAL DOCUMENTS

217
(FIVE YEARS 82)

H-INDEX

24
(FIVE YEARS 5)

2021 ◽  
Vol 11 (11) ◽  
pp. 1211
Author(s):  
Sara Bravaccini ◽  
Roberta Maltoni

Trop-2 is an ideal candidate for targeted therapeutics because it is a transmembrane protein with an extracellular domain overexpressed in a wide variety of tumors, and is upregulated in normal cells. Consequently, several Trop-2-targeted drugs have recently been developed for clinical use, such as anti-Trop-2 antibodies. Sacituzumab govitecan, a Trop-2-directed antibody and topoisomerase inhibitor drug conjugate, was recently approved by the Food and Drug Administration (FDA) and European Medicines Agency (EMA) for the treatment of metastatic triple-negative breast cancer and metastatic urothelial cancer. In Italy, this treatment cannot be used in clinical practice because it has not yet been approved by the Agenzia Italiana del Farmaco (AIFA, Rome, Italy). In Italy, this is not a new problem, in fact, when a new compound is approved by the U.S. and Europe, there is often a delay in its approval for use. The adoption of universal guidelines and the standardization of Trop-2 evaluation is urgently needed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Garth E. Ringheim ◽  
Matthew Wampole ◽  
Kinsi Oberoi

Clinical development of BTK kinase inhibitors for treating autoimmune diseases has lagged behind development of these drugs for treating cancers, due in part from concerns over the lack of selectivity and associated toxicity profiles of first generation drug candidates when used in the long term treatment of immune mediated diseases. Second generation BTK inhibitors have made great strides in limiting off-target activities for distantly related kinases, though they have had variable success at limiting cross-reactivity within the more closely related TEC family of kinases. We investigated the BTK specificity and toxicity profiles, drug properties, disease associated signaling pathways, clinical indications, and trial successes and failures for the 13 BTK inhibitor drug candidates tested in phase 2 or higher clinical trials representing 7 autoimmune and 2 inflammatory immune-mediated diseases. We focused on rheumatoid arthritis (RA), multiple sclerosis (MS), and systemic lupus erythematosus (SLE) where the majority of BTK nonclinical and clinical studies have been reported, with additional information for pemphigus vulgaris (PV), Sjogren’s disease (SJ), chronic spontaneous urticaria (CSU), graft versus host disease (GVHD), and asthma included where available. While improved BTK selectivity versus kinases outside the TEC family improved clinical toxicity profiles, less profile distinction was evident within the TEC family. Analysis of genetic associations of RA, MS, and SLE biomarkers with TEC family members revealed that BTK and TEC family members may not be drivers of disease. They are, however, mediators of signaling pathways associated with the pathophysiology of autoimmune diseases. BTK in particular may be associated with B cell and myeloid differentiation as well as autoantibody development implicated in immune mediated diseases. Successes in the clinic for treating RA, MS, PV, ITP, and GVHD, but not for SLE and SJ support the concept that BTK plays an important role in mediating pathogenic processes amenable to therapeutic intervention, depending on the disease. Based on the data collected in this study, we propose that current compound characteristics of BTK inhibitor drug candidates for the treatment of autoimmune diseases have achieved the selectivity, safety, and coverage requirements necessary to deliver therapeutic benefit.


2021 ◽  
Vol 9 (11) ◽  
pp. e003683
Author(s):  
David Hsiehchen ◽  
Magdalena Espinoza ◽  
Cristina Valero ◽  
Chul Ahn ◽  
Luc G T Morris

The FDA approval of immune checkpoint inhibitors for cancers with tumor mutation burden (TMB) of at least 10 mut/Mb is postulated to reduce healthcare disparities by broadly expanding treatment eligibility. In a cohort of 39,400 patients with available genomic and race data, black and Asian patients were less likely to have TMB-high cancers in multiple types of malignancies based on the currently approved cut-off. Decreasing TMB thresholds preferentially increased the eligibility of minority patients for immune checkpoint inhibitors while retaining predictive value of treatment benefit in a cohort of immune checkpoint inhibitor treated patients. This study highlights differing distributions of TMB-high cancers between racial groups and provides guidance in developing more rational eligibility criteria for immune checkpoint inhibitors.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ravi Kiran Panchakarla ◽  
Punna Rao Ravi ◽  
Venkata Gowri Chandra Sekhar Kondapalli

Abstract Background Dapoxetine hydrochloride is a selective serotonin reuptake inhibitor drug for treating premature ejaculation. This study was designed to develop and validate a sensitive and selective LC–MS/MS method for trace analysis of genotoxic impurity ethyl methanesulfonate in Dapoxetine hydrochloride. Results Chromatographic separation was achieved on the Shodex RSpak DS-413 column, 150 × 4.6 mm, 3.0 µm using eluent containing a equal volumes of acetonitrile and 0.1% v/v formic acid in water was used in the isocratic elution mode at a pump flow of 1.0 mL/min. No interference was observed at the retention time of ethyl methanesulfonate, indicating that the developed method is specific and selective for trace level quantification.The developed method was found to be linear in the concentration range of 1–50 ppm with coefficient of regression of 0.9997. Detection limit and quantification limit were determined to be 0.6 ppm and 1.0 ppm respectively. Acceptable RSD values (< 10.0%) and recovery results (> 90%) obtained from the accuracy and precison experiments indicate that the developed method is precise and accurate in the concentration range of 1–50 ppm. Ethyl methanesulfonate solutions were stable for two days when stored at room and refrigerated temperatures. Conclusion The developed method has the ability to quantify ethyl methanesulfonate in dapoxetine hydrochloride. Thus, the anticipated method has high probability to adopt in the quality testing laboratories of pharmaceutical industry.


2021 ◽  
Vol 63 (3) ◽  
pp. 56-62
Author(s):  
Xuan Truong Le ◽  
◽  
Hue Minh Nguyen ◽  
Ngoc Quynh Le ◽  
Thi Thu Loan Trinh ◽  
...  

Pantoprazole is a first-line proton pump inhibitor drug for the treatment of gastric acid secretion disorders that is known to have minimal side effects and drug interactions. To improve its stability in gastric acid, delayed-release microspheres containing pantoprazole was prepared by emulsification-solvent evaporation using a polymer-containing mixture of hydroxypropyl cellulose (HPC) and ethyl cellulose (EC), which was then coated by alginate and EudragitL100. The morphological characteristics of the microspheres were examined by SEM, the particle size distribution inferred by laser diffraction, and the physical state of drug substance was measured by Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and in vitro drug release. The three formulations of microspheres chosen for this study had an average size of 100 μm. The dissolution profile showed less than 10% of the drug was released after 120 min in 0.1-M HCl and more than 75% of drug was released after 45 min in a phosphate buffer with a pH of 6.8.


2021 ◽  
Vol 19 ◽  
Author(s):  
Ajit Monteiro ◽  
Karl O. A. Yu ◽  
Mark D. Hicar

: A number of different viral families have developed convergent methods to infect cells. Class I fusion proteins are commonly used by members of Arenaviridae, Coronaviridae, Filovirdae, Orthomyxoviridae, Paramyxoviridae, and Retroviridae. Class I viral fusion proteins are trimers that are involved in recognizing the cellular receptor, with a region that is responsible for fusing the viral and target cell membranes. During the fusion process, the fusion region folds into a six-helix bundle (6HB) which approximates the two membranes leading to fusion. For human immunodeficiency virus (HIV), the gp41 subunit is responsible for the formation of this 6HB. The fusion inhibitor drug enfuvirtide, or T20, is the only US Food and Drug Administration and European Medicines Agency approved drug which targets this crucial step and has been widely used in combination regimens for the treatment of HIV since March 2003. In this review, we describe the current state of peptide-based fusion inhibitors in the treatment of HIV, and review how the field of HIV research is driving advances in the development of similar therapeutics in other viral systems, including the severe acute respiratory syndrome (SARS) coronaviruses.


2021 ◽  
Author(s):  
Zeyad Ibrahim Alehaideb

Abstract Herb-drug interaction (HDI) has become important due to the increasing popularity of natural product consumption worldwide. HDI is difficult to predict as botanical drugs usually contain complex phytochemical-mixtures which interact with drug metabolism. Currently, there is no pharmacological tool to predict HDI since almost all in vitro-in vivo-extrapolation (IVIVE) Drug-Drug Interaction (DDI) models deal with one inhibitor-drug and one victim-drug. The objectives were to modify IVIVE models of Mayhew et al. (2000) and Wang et al. (2004) for prediction of in vivo interaction between caffeine and furanocoumarin-containing herbs, and to confirm model prediction by comparing the predictive results with experimental data. The models were modified to predict in vivo herb-caffeine interaction using the same set of inhibition constants but different integrated dose/concentration of furanocoumarin mixtures in the liver. Different hepatic inlet inhibitor concentration ([I]H) surrogates were used for each furanocoumarin. In the Mayhew et al., the [I]H was predicted using the concentration-addition model for chemical-mixtures. In the Wang et al., the [I]H was calculated by adding individual furanocoumarins together. Once [I]H was determined, the models predicted an area-under-curve-ratio (AUCR) of each interaction. The results indicate that both models were able to predict the experimental AUCR of herbal products reasonably well.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Louis Legoff ◽  
Ouzna Dali ◽  
Elena De La Mata Santaella ◽  
Christian Jaulin ◽  
Shereen Cynthia D’Cruz ◽  
...  

Abstract Background Panobinostat (PB), a histone deacetylase (HDAC) inhibitor drug, is clinically used in the treatment of cancers. We investigated the effects of PB on murine ovarian functions in embryos and adult animals. Methods C57BL/6J mice were treated with 5 mg/kg PB on alternate days from embryonic day (E) 6.5 to E15.5. We analysed the effects of PB on the ovaries by using immunofluorescence, gene expression analysis and DNA methylation analysis techniques. Results At E15.5, we observed increases in histone H3K9Ac, H4Ac and H3K4me3 marks, while the level of the silencing H3K9me3 mark decreased. Synaptonemal complex examination at E15.5, E17.5 and E18.5 showed a delay in meiotic progression characterized by the absence of synaptonemal complexes at E15.5 and the persistence of double-strand breaks (DSBs) at E17.5 and E18.5 in PB-exposed oocytes. We found that exposure to PB led to changes in the expression of 1169 transcripts at E15.5. Genes regulated by the male-specific factors SRY-Box Transcription Factor 9 (SOX9) and Doublesex and Mab-3-related Transcription factor 1 (DMRT1) were among the most upregulated genes in the ovaries of PB-exposed mice. In contrast, PB treatment led to decreases in the expression of genes regulated by the WNT4 pathway. Notably, we observed 119 deregulated genes encoding Zn-finger proteins. The observed alterations in epigenetic marks and gene expression correlated with decreases in the numbers of germ cells at E15.5. After birth, PB-exposed ovaries showed increased proliferation of primary and secondary follicles. We also observed decreases in the numbers of primordial, primary and secondary follicles in adult ovaries from mice that were exposed to PB in utero. Finally, epigenetic alterations such as decreased H3K4me3 and increased H4 acetylation levels were also detected in somatic cells surrounding fully grown oocytes. Conclusion Our data suggest that inhibition of histone deacetylase by PB during a critical developmental window affects reprogramming and germ cell specification via alteration of epigenetic marks.


Sign in / Sign up

Export Citation Format

Share Document