Dry matter production of green pea influenced by herbicides

2005 ◽  
Vol 33 (1) ◽  
pp. 377-380
Author(s):  
Erzsébet Nádasy ◽  
Gábor Wágner
2013 ◽  
Vol 38 (10) ◽  
pp. 1884-1890 ◽  
Author(s):  
Ren-He ZHANG ◽  
Dong-Wei GUO ◽  
Xing-Hua ZHANG ◽  
Hai-Dong LU ◽  
Jian-Chao LIU ◽  
...  

2011 ◽  
Vol 37 (8) ◽  
pp. 1432-1440
Author(s):  
Cheng-Yan ZHENG ◽  
Shi-Ming CUI ◽  
Dong WANG ◽  
Zhen-Wen YU ◽  
Yong-Li ZHANG ◽  
...  

2013 ◽  
Vol 20 (11) ◽  
pp. 1457-1463
Author(s):  
Bing WU ◽  
Yu-Hong GAO ◽  
Li ZHAO ◽  
Yong-Jun CHEN ◽  
Peng LING ◽  
...  

Crop Science ◽  
2002 ◽  
Vol 42 (1) ◽  
pp. 146 ◽  
Author(s):  
P. Q. Craufurd ◽  
P. V. Vara Prasad ◽  
R. J. Summerfield

2010 ◽  
Vol 1 (1) ◽  
pp. 83-83 ◽  
Author(s):  
G Tuñon ◽  
E Kennedy ◽  
D Hennessy ◽  
P Kemp ◽  
N Lopez Villalobos ◽  
...  

2021 ◽  
Vol 265 ◽  
pp. 108104
Author(s):  
Santiago Julián Kelly ◽  
María Gabriela Cano ◽  
Diego Darío Fanello ◽  
Eduardo Alberto Tambussi ◽  
Juan José Guiamet

1966 ◽  
Vol 67 (2) ◽  
pp. 199-210 ◽  
Author(s):  
A.G. Campbell

1. Net pasture dry matter production and available pasture dry matter were measured over 3 years in a small-scale replica of the study of the effects of dairy cow grazing management and stocking rate reported by McMeekan & Walshe (1963).2. The four treatments were(i) Controlled rotational grazing, light stocking rate (0.95 cows/acre).(ii) Controlled rotational grazing, heavy stocking rate (1.19 cows/acre).(iii) Uncontrolled, set stocked grazing, light stocking rate (0.95 cows/acre).(iv) Uncontrolled, set stocked grazing, heavy stocking rate (1.19 cows/acre).3. The pasture measurement technique employed measured net pasture production (gains through new growth minus losses from all sources). It is argued that this parameter, rather than absolute pasture production, governs the changes in the dry matter feed supply to the grazing animal.


2021 ◽  
Author(s):  
Yandong Lv ◽  
Yuchen Lan ◽  
Lingqi Xu ◽  
Dawei Yin ◽  
Haize Wang ◽  
...  

Author(s):  
Alide M. W. Cova ◽  
Fabio T. O. de Freitas ◽  
Paula C. Viana ◽  
Maria R. S. Rafael ◽  
André D. de Azevedo Neto ◽  
...  

ABSTRACT The objective of this study was to evaluate the growth and accumulation of ions in lettuce grown in different hydroponic systems and recirculation frequencies. The experimental design was randomized blocks with 8 treatments and 4 replicates. The evaluated hydroponic systems were Nutrient Flow Technique (NFT) and an adapted Deep Flow Technique (DFT), the latter with recirculation frequencies of 0.25, 2 and 4 h. Both systems used fresh water and brackish water. Plant growth, accumulation of inorganic solutes (Na+, K+, Cl- and NO3-) and the correlation between dry matter production and Na+/K+ and Cl-/NO3- were evaluated. The salinity of the water used to prepare the nutrient solution caused decrease in growth and K+ and NO3- levels, and increased contents of Na+ and Cl- in the plants. When using fresh water the highest dry matter production was obtained in the NFT system. In case of brackish water the adapted DFT system increased the production, in relation to NFT system (at same recirculation frequency: 0.25 h). It was found that the choice of the type of hydroponic system and recirculation interval for the cultivation of lettuce depends on the quality of the water used to prepare the nutrient solution.


Sign in / Sign up

Export Citation Format

Share Document