Respiratory responses to electrical stimulation of the basal ganglia in cats

Neurobiology ◽  
2001 ◽  
Vol 9 (2) ◽  
pp. 73-79 ◽  
Author(s):  
L. Ángyán ◽  
Z. Ángyán
2001 ◽  
Vol 91 (4) ◽  
pp. 1713-1722 ◽  
Author(s):  
Fadi Xu ◽  
Tongrong Zhou ◽  
Tonya Gibson ◽  
Donald T. Frazier

Electrical stimulation of the rostral fastigial nucleus (FNr) alters respiration via activation of local neurons. We hypothesized that this FNr-mediated respiratory response was dependent on the integrity of the nucleus gigantocellularis of the medulla (NGC). Electrical stimulation of the FNr in 15 anesthetized and tracheotomized spontaneously breathing rats significantly altered ventilation by 35.2 ± 11.0% ( P < 0.01) with the major effect being excitatory (78%). This respiratory response did not significantly differ from control after lesions of the NGC via bilateral microinjection of kainic or ibotenic acid (4.5 ± 1.9%; P > 0.05) but persisted in sham controls. Eight other rats, in which horseradish peroxidase (HRP) solution was previously microinjected into the left NGC, served as nonstimulation controls or were exposed to either 15-min repeated electrical stimulation of the right FNr or hypercapnia for 90 min. Histochemical and immunocytochemical data showed that the right FNr contained clustered HRP-labeled neurons, most of which were double labeled with c-Fos immunoreactivity in both electrically and CO2-stimulated rats. We conclude that the NGC receives monosynaptic FNr inputs and is required for fully expressing FNr-mediated respiratory responses.


1991 ◽  
Vol 70 (6) ◽  
pp. 2539-2550 ◽  
Author(s):  
F. A. Hopp ◽  
J. L. Seagard ◽  
J. Bajic ◽  
E. J. Zuperku

Respiratory responses arising from both chemical stimulation of vascularly isolated aortic body (AB) and carotid body (CB) chemoreceptors and electrical stimulation of aortic nerve (AN) and carotid sinus nerve (CSN) afferents were compared in the anesthetized dog. Respiratory reflexes were measured as changes in inspiratory duration (TI), expiratory duration (TE), and peak averaged phrenic nerve activity (PPNG). Tonic AN and AB stimulations shortened TI and TE with no change in PPNG, while tonic CSN and CB stimulations shortened TE, increased PPNG, and transiently lengthened TI. Phasic AB and AN stimulations throughout inspiration shortened TI with no changes in PPNG or the following TE; however, similar phasic stimulations of the CB and CSN increased both TI and PPNG and decreased the following TE. Phasic AN stimulation during expiration decreased TE and the following TI with no change in PPNG. Similar stimulations of the CB and CSN decreased TE; however, the following TI and PPNG were increased. These findings differ from those found in the cat and suggest that aortic chemoreceptors affect mainly phase timing, while carotid chemoreceptors affect both timing and respiratory drive.


Neuroscience ◽  
1997 ◽  
Vol 81 (1) ◽  
pp. 93-112 ◽  
Author(s):  
V Sgambato ◽  
V Abo ◽  
M Rogard ◽  
M.J Besson ◽  
J.M Deniau

2015 ◽  
Vol 113 (6) ◽  
pp. 1681-1696 ◽  
Author(s):  
Masaharu Yasuda ◽  
Okihide Hikosaka

Gaze is strongly attracted to visual objects that have been associated with rewards. Key to this function is a basal ganglia circuit originating from the caudate nucleus (CD), mediated by the substantia nigra pars reticulata (SNr), and aiming at the superior colliculus (SC). Notably, subregions of CD encode values of visual objects differently: stably by CD tail [CD(T)] vs. flexibly by CD head [CD(H)]. Are the stable and flexible value signals processed separately throughout the CD-SNr-SC circuit? To answer this question, we identified SNr neurons by their inputs from CD and outputs to SC and examined their sensitivity to object values. The direct input from CD was identified by SNr neuron's inhibitory response to electrical stimulation of CD. We found that SNr neurons were separated into two groups: 1) neurons inhibited by CD(T) stimulation, located in the caudal-dorsal-lateral SNr (cdlSNr), and 2) neurons inhibited by CD(H) stimulation, located in the rostral-ventral-medial SNr (rvmSNr). Most of CD(T)-recipient SNr neurons encoded stable values, whereas CD(H)-recipient SNr neurons tended to encode flexible values. The output to SC was identified by SNr neuron's antidromic response to SC stimulation. Among the antidromically activated neurons, many encoded only stable values, while some encoded only flexible values. These results suggest that CD(T)-cdlSNr-SC circuit and CD(H)-rvmSNr-SC circuit transmit stable and flexible value signals, largely separately, to SC. The speed of signal transmission was faster through CD(T)-cdlSNr-SC circuit than through CD(H)-rvmSNr-SC circuit, which may reflect automatic and controlled gaze orienting guided by these circuits.


2016 ◽  
Vol 116 (6) ◽  
pp. 2869-2881 ◽  
Author(s):  
Stefan Kammermeier ◽  
Damien Pittard ◽  
Ikuma Hamada ◽  
Thomas Wichmann

Deep brain stimulation of the internal globus pallidus (GPi) is a major treatment for advanced Parkinson's disease. The effects of this intervention on electrical activity patterns in targets of GPi output, specifically in the thalamus, are poorly understood. The experiments described here examined these effects using electrophysiological recordings in two Rhesus monkeys rendered moderately parkinsonian through treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), after sampling control data in the same animals. Analysis of spontaneous spiking activity of neurons in the basal ganglia-receiving areas of the ventral thalamus showed that MPTP-induced parkinsonism is associated with a reduction of firing rates of segments of the data that contained neither bursts nor decelerations, and with increased burst firing. Spectral analyses revealed an increase of power in the 3- to 13-Hz band and a reduction in the γ-range in the spiking activity of these neurons. Electrical stimulation of the ventrolateral motor territory of GPi with macroelectrodes, mimicking deep brain stimulation in parkinsonian patients (bipolar electrodes, 0.5 mm intercontact distance, biphasic stimuli, 120 Hz, 100 μs/phase, 200 μA), had antiparkinsonian effects. The stimulation markedly reduced oscillations in thalamic firing in the 13- to 30-Hz range and uncoupled the spiking activity of recorded neurons from simultaneously recorded local field potential (LFP) activity. These results confirm that oscillatory and nonoscillatory characteristics of spontaneous activity in the basal ganglia receiving ventral thalamus are altered in MPTP-induced parkinsonism. Electrical stimulation of GPi did not entrain thalamic activity but changed oscillatory activity in the ventral thalamus and altered the relationship between spikes and simultaneously recorded LFPs.


1984 ◽  
Vol 57 (4) ◽  
pp. 1034-1038 ◽  
Author(s):  
T. Gordon ◽  
C. S. Venugopalan ◽  
M. O. Amdur ◽  
J. M. Drazen

The predominant airway site and mechanism underlying ozone (O3)-induced respiratory hyperresponsiveness was examined in anesthetized guinea pigs and in vitro tissue preparations. Animals exposed to 1.0 or 1.2 ppm O3 (1 h) demonstrated an enhanced airway response to subcutaneous histamine compared with air-exposed animals. The anatomic site of hyperresponsiveness most likely did not involve the parenchyma, since quasi-static deflationary pulmonary compliance was decreased to a similar extent by histamine in air- and O3-preexposed animals. In contrast, the conducting airways were probably involved as changes in pulmonary resistance elicited by subcutaneous histamine were greater in O3- than in air-exposed animals. Neither atropine nor vagotomy abolished this enhanced responsiveness induced by O3. Although vagal interruption did not alter responsiveness, O3-exposed animals demonstrated greater respiratory responses to efferent electrical stimulation of the vagi than air-exposed animals. This suggests the site of hyperresponsiveness may be located distal to the site of efferent stimulation, possibly in the smooth muscle itself or in its microenvironment.


1955 ◽  
Vol 18 (3) ◽  
pp. 276-287 ◽  
Author(s):  
Donald W. Baxter ◽  
Jerzy Olszewski

Sign in / Sign up

Export Citation Format

Share Document