immediate early gene
Recently Published Documents


TOTAL DOCUMENTS

1001
(FIVE YEARS 51)

H-INDEX

103
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Pablo J Lituma ◽  
Robert H Singer ◽  
Sulagna Das ◽  
Pablo E Castillo

The ability of neurons to process and store salient environmental features underlies information processing in the brain. Long-term information storage requires synaptic plasticity and regulation of gene expression. While distinct patterns of activity have been linked to synaptic plasticity, their impact on immediate early gene (IEG) expression remains poorly understood. The activity regulated cytoskeleton associated (Arc) gene has received wide attention as an IEG implicated in synaptic plasticity and memory. Yet, to date, the transcriptional dynamics of Arc in response to compartment and input-specific activity is unclear. By developing a knock-in mouse to fluorescently tag Arc alleles, we studied real-time transcription dynamics after stimulation of dentate granule cells (GCs) in acute hippocampal slices. To our surprise, we found that Arc transcription displayed distinct temporal kinetics depending on the activation of excitatory inputs that convey functionally distinct information, i.e. medial and lateral perforant paths (MPP and LPP, respectively). Moreover, the transcriptional dynamics of Arc after synaptic stimulation was similar to direct activation of GCs, although the contribution of ionotropic glutamate receptors, L-type voltage gated calcium channel, and the endoplasmic reticulum (ER) differed. Specifically, we observed an ER-mediated synapse-to-nucleus signal that supported elevations in nuclear calcium, and rapid induction of Arc transcription following MPP stimulation. However, activation of LPP inputs displayed lower nuclear calcium rise, which could underlie the delayed transcriptional onset of Arc. Our findings highlight how input-specific activity distinctly impacts transcriptional dynamics of an IEG linked to learning and memory.


2021 ◽  
Author(s):  
Siddhartha G. Jena ◽  
Catherine Yu ◽  
Jared E. Toettcher

SummaryMany canonical signaling pathways exhibit complex time-varying responses, yet how minutes-timescale pulses of signaling interact with the dynamics of transcription and gene expression remains poorly understood. Erk-induced immediate early gene (IEG) expression is a model of this interface, exemplifying both dynamic pathway activity and a rapid, potent transcriptional response. Here, we quantitatively characterize IEG expression downstream of dynamic Erk stimuli in individual cells. We find that IEG expression responds rapidly to acute changes in Erk activity, but only in a sub-population of stimulus-responsive cells. We find that while Erk activity partially predicts IEG expression, a majority of response heterogeneity is independent of Erk and can be rapidly tuned by different mitogenic stimuli and parallel signaling pathways. We extend our findings to an in vivo context, the mouse epidermis, where we observe heterogenous immediate-early gene accumulation in both fixed tissue and single-cell RNA-sequencing data. Our results demonstrate that signaling dynamics can be faithfully transmitted to gene expression and suggest that the signaling-responsive population is an important parameter for interpreting gene expression responses.


2021 ◽  
pp. JN-RM-0008-20
Author(s):  
Madeleine Kyrke-Smith ◽  
Lenora J. Volk ◽  
Samuel F. Cooke ◽  
Mark F. Bear ◽  
Richard L. Huganir ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document