Centrally symmetric convex bodies and sections having maximal quermassintegrals
Let d ≧ 2, and let K ⊂ ℝd be a convex body containing the origin 0 in its interior. In a previous paper we have proved the following. The body K is 0-symmetric if and only if the following holds. For each ω ∈ Sd−1, we have that the (d − 1)-volume of the intersection of K and an arbitrary hyperplane, with normal ω, attains its maximum if the hyperplane contains 0. An analogous theorem, for 1-dimensional sections and 1-volumes, has been proved long ago by Hammer (see [2]). In this paper we deal with the ((d − 2)-dimensional) surface area, or with lower dimensional quermassintegrals of these intersections, and prove an analogous, but local theorem, for small C2-perturbations, or C3-perturbations of the Euclidean unit ball, respectively.