Macrosegregation of Y2Ba1Cu1O5 particles in Y1Ba2Cu3O7−δ crystals grown by an undercooling method

1996 ◽  
Vol 11 (4) ◽  
pp. 795-803 ◽  
Author(s):  
A. Endo ◽  
H. S. Chauhan ◽  
T. Egi ◽  
Y. Shiohara

Macrosegregation of Y2Ba1Cu1O5 (Y211) particles was observed in Pt-added Y1Ba2Cu3O7−δ (Y123) crystals grown by an undercooling method. It was found that the macrosegregation of Y211 particles depended on the growth direction and the growth rate (R) as a function of undercooling (ΔT). The amount of Y211 particles in Y123 crystals grown at large R was larger than at small R. Also, the amount of Y211 in Y123 growing along the a-direction was larger than that along the c-direction. Further, it was noted that the smaller Y211 particles in size were distributed in Y123 grown at large R. These phenomena could be at least qualitatively explained by the prevalent trapping/pushing theory. In the direct observation of magnetic flux with the Faraday effect of iron garnet film, the flux pinning force was found to be in good agreement with the macrosegregation of Y211 particles.

JETP Letters ◽  
2020 ◽  
Vol 112 (5) ◽  
pp. 299-304
Author(s):  
P. M. Vetoshko ◽  
G. A. Knyazev ◽  
A. N. Kuzmichev ◽  
A. A. Kholin ◽  
V. I. Belotelov ◽  
...  

Author(s):  
Danlu Zhang ◽  
Fang Wan ◽  
Michael D. Sumption ◽  
Edward W. Collings ◽  
CJ Thong ◽  
...  

2020 ◽  
Vol 33 (11) ◽  
pp. 3333-3339
Author(s):  
M. R. Koblischka ◽  
A. Wiederhold ◽  
A. Koblischka-Veneva ◽  
C. Chang

Abstract Flux pinning force scaling $f=F_{p}/F_{p,\max \limits }$ f = F p / F p , max vs. h = Ha/Hirr was performed on a variety of pure MgB2 samples, including a spark plasma sintered (SPS) one and a series of samples sintered at various reaction temperatures ranging between 775 and 950 ∘C. The SPS sample exhibits a well-developed scaling at all temperatures, and also the sintered samples prepared at 950 ∘C; however, the obtained peak positions of the pinning force scalings are distinctly different: The SPS sample reveals dominating pinning at grain boundaries, whereas the dominating pinning for the other one is point-pinning. All other samples studied reveal an apparent non-scaling of the pinning forces. The obtained pinning parameters are discussed in the framework of the Dew–Hughes’ pinning force scaling approach.


Sign in / Sign up

Export Citation Format

Share Document