pinning force
Recently Published Documents


TOTAL DOCUMENTS

304
(FIVE YEARS 41)

H-INDEX

28
(FIVE YEARS 3)

Author(s):  
Judy Z Wu ◽  
Victor Ogunjimi ◽  
Mary Ann Sebastian ◽  
Di Zhang ◽  
Jie Jian ◽  
...  

Abstract One-dimensional c-axis-aligned BaZrO3 (BZO) nanorods are regarded as strong one-dimensional artificial pinning centers (1D-APCs) in BZO-doped YaBa2Cu3O7-x (BZO/YBCO) nanocomposite films. However, a microstructure analysis has revealed a defective, oxygen-deficient YBCO column around the BZO 1D-APCs due to the large lattice mismatch of ~7.7% between the BZO (3a=1.26 nm) and YBCO (c=1.17 nm), which has been blamed for the reduced pinning efficiency of BZO 1D-APCs. Herein, we report a dynamic lattice enlargement approach on the tensile strained YBCO lattice during the BZO 1D-APCs growth to induce c-axis elongation of the YBCO lattice up to 1.26 nm near the BZO 1D-APC/YBCO interface via Ca/Cu substitution on single Cu-O planes of YBCO, which prevents the interfacial defect formation by reducing the BZO/YBCO lattice mismatch to ~1.4%. Specifically, this is achieved by inserting thin Ca0.3Y0.7Ba2Cu3O7-x (CaY-123) spacers as the Ca reservoir in 2-6 vol.% BZO/YBCO nanocomposite multilayer (ML) films. A defect-free, coherent BZO 1D-APC/YBCO interface is confirmed in transmission electron microscopy and elemental distribution analyses. Excitingly, up to five-fold enhancement of Jc (B) at magnetic field B=9.0 T//c-axis and 65-77 K was obtained in the ML samples as compared to their BZO/YBCO single-layer (SL) counterpart’s. This has led to a record high pinning force density Fp together with significantly enhanced Bmax at which Fp reaches its maximum value Fp,max for BZO 1D-APCs at B//c-axis. At 65 K, the Fp,max ~158 GN/m3 and Bmax ~ 8.0 T for the 6% BZO/YBCO ML samples represent a significant enhancement over Fp,max ~36.1 GN/m3 and Bmax ~ 5.0 T for the 6% BZO/YBCO SL counterparts. This result not only illustrates the critical importance of a coherent BZO 1D-APC/YBCO interface in the pinning efficiency, but also provides a facile scheme to achieve such an interface to restore the pristine pinning efficiency of the BZO 1D-APCs.


Author(s):  
Yongqiang Pan ◽  
Nan Zhou ◽  
Bencheng Lin ◽  
Jinhua Wang ◽  
Zengwei Zhu ◽  
...  

Abstract Fe1+yTe0.6Se0.4 has considerable application potential due to its large critical current density (J c) and high upper critical magnetic field (H c2). However, the uncertainty of the anisotropy of J c and the unclear flux-pinning mechanism have limited the application of this material. In this study, the J c in three directions were obtained from magnetic hysteresis loop measurements. A large anisotropy of J c ab /J c c ~ 10 was observed, and the origin of the anisotropy was discussed in details. Flux pinning force densities (F p) were obtained from J c, and a non-scaling behavior was found in the normalized pinning force f p[F p/F p-max] versus the normalized field h[H/H c2]. The peaks of pinning force shift from a high h to a low h with increasing temperature. Based on the vortex dynamics analysis, the peak shift was found to originate from the magnetization relaxation. The J c and F p at critical states free from the magnetic relaxation were regained. According to the Dew-Hughes model, the dominant pinning type in Fe1+yTe0.6Se0.4 clean single crystals was confirmed to be normal point pinning.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5214
Author(s):  
Armando Galluzzi ◽  
Krastyo Buchkov ◽  
Vihren Tomov ◽  
Elena Nazarova ◽  
Antonio Leo ◽  
...  

The magnetization M of an Fe(Se, Te) single crystal has been measured as a function of temperature T and dc magnetic field H. The sample properties have been analyzed in the case of a magnetic field parallel to its largest face H||ab. From the M(T) measurement, the Tc of the sample and a magnetic background have been revealed. The superconducting hysteresis loops M(H) were between 2.5 K and 15 K showing a tilt due to the presence of a magnetic signal measured at T > Tc. From the M(H) curves, the critical current density Jc(H) has been extracted at different temperatures showing the presence of a second magnetization peak phenomenon. By extracting and fitting the Jc(T) curves at different fields, a pinning regime crossover has been identified and shown to be responsible for the origin of the second magnetization peak phenomenon. Then, the different kinds of pinning centers of the sample were investigated by means of Dew-Hughes analysis, showing that the pinning mechanism in the sample can be described in the framework of the collective pinning theory. Finally, the values of the pinning force density have been calculated at different temperatures and compared with the literature in order to understand if the sample is promising for high-current and high-power applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chiara Tarantini ◽  
Fumitake Kametani ◽  
Shreyas Balachandran ◽  
Steve M. Heald ◽  
Laura Wheatley ◽  
...  

AbstractIn recent years there has been an increasing effort in improving the performance of Nb3Sn for high-field applications, in particular for the fabrication of conductors suitable for the realization of the Future Circular Collider (FCC) at CERN. This challenging task has led to the investigation of new routes to advance the high-field pinning properties, the irreversibility and the upper critical fields (HIrr and Hc2, respectively). The effect of hafnium addition to the standard Nb-4Ta alloy has been recently demonstrated to be particularly promising and, in this paper, we investigate the origins of the observed improvements of the superconducting properties. Electron microscopy, Extended X-ray Absorption Fine Structure Spectroscopy (EXAFS) and Atom Probe Tomography (APT) characterization clearly show that, in presence of oxygen, both fine Nb3Sn grains and HfO2 nanoparticles form. Although EXAFS is unable to detect significant amounts of Hf in the A15 structure, APT does indeed reveal some residual intragrain metallic Hf. To investigate the layer properties in more detail, we created a microbridge from a thin lamella extracted by Focused Ion Beam (FIB) and measured the transport properties of Ta-Hf-doped Nb3Sn. Hc2(0) is enhanced to 30.8 T by the introduction of Hf, ~ 1 T higher than those of only Ta-doped Nb3Sn, and, even more importantly the position of the pinning force maximum exceeds 6 T, against the typical ~ 4.5–4.7 T of the only Ta-doped material. These results show that the improvements generated by Hf addition can significantly enhance the high-field performance, bringing Nb3Sn closer to the requirements necessary for FCC realization.


2021 ◽  
Vol 42 (1) ◽  
pp. 24-38
Author(s):  
MN Hasan ◽  
M Muralidhar

The pinning force density Fp and the critical current density Jc were investigated in Nd0.33Eu0.33Gd0.33Ba2Cu3O(NEG-123) superconductors with addition of NEG-211 and EG-211 secondary phase particles of the volume fractions up to 10 mol% by analyzing experimental data of DC magnetization and compared with theoretical calculation based on flux creep-flow model taking the pinning parameter into account. The pinning parameters such that the number of flux lines in the flux bundle (g2), the most probable value of pinning strength (Am), distribution width (σ2), upper critical field (Bc2) were determined so that a good fit was obtained between theoretical and experimental results. The Chittagong Univ. J. Sci. 42(1): 24-38, 2020


Science ◽  
2021 ◽  
Vol 372 (6545) ◽  
pp. 961-964
Author(s):  
Marion Höfling ◽  
Xiandong Zhou ◽  
Lukas M. Riemer ◽  
Enrico Bruder ◽  
Binzhi Liu ◽  
...  

Defects are essential to engineering the properties of functional materials ranging from semiconductors and superconductors to ferroics. Whereas point defects have been widely exploited, dislocations are commonly viewed as problematic for functional materials and not as a microstructural tool. We developed a method for mechanically imprinting dislocation networks that favorably skew the domain structure in bulk ferroelectrics and thereby tame the large switching polarization and make it available for functional harvesting. The resulting microstructure yields a strong mechanical restoring force to revert electric field–induced domain wall displacement on the macroscopic level and high pinning force on the local level. This induces a giant increase of the dielectric and electromechanical response at intermediate electric fields in barium titanate [electric field–dependent permittivity (ε33) ≈ 5800 and large-signal piezoelectric coefficient (d33*) ≈ 1890 picometers/volt]. Dislocation-based anisotropy delivers a different suite of tools with which to tailor functional materials.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yi Li ◽  
Jian Zhou ◽  
Runjie Li ◽  
Qingyu Zhang

Zener pinning between a curved Cu grain boundary (GB) and a differently shaped and oriented Ag particle has been simulated via molecular dynamics. The computed magnitudes of the maximum pinning force agreed with theoretical predictions only when the force was small. As the force increased, discrepancy became obvious. Through careful inspection of the structures of the Cu–Ag interfaces, detailed interaction processes, and variation of the Cu GB during the interaction, the discrepancy is found to correlate with GB faceting, which very likely reduces the maximum pinning force and facilitates boundary passage. GB anisotropy and/or interface characteristics are also found to slightly contribute to the discrepancy. These findings suggest that the assumption of an isotropic GB with constant energy utilized in previous theoretical studies for deriving the maximum pinning force might be inappropriate and that an accurate maximum pinning force could not be predicted without knowing the effects of GB evolution together with detailed properties of both GBs and interfaces.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Seyyedmajid Sharifvaghefi ◽  
Hanif Kazerooni

AbstractFog harvesting is an unconventional source of water that can be used in some regions with water scarcity to overcome water shortages. The most commonly used collectors are meshes which have intrinsic limitations, the most important of which are clogging and aerodynamic deviation of droplets around the wires. Here, three techniques are compared and combined to overcome these limitations, i.e., replacing the mesh with an array of vertical wires, addition of a hydrophobic layer to the wires, and forcing the ionized droplets to move toward the wires by applying an electric field. The combination of these techniques was found to result in higher fog harvesting efficiency compared to each individual method with the highest impact from the addition of the electric field. The combined methods lead to a 60-fold increase in fog harvesting efficiency compared to meshes. The findings showed that when the fog droplets are forced in an electric field toward the wires, the shading coefficient for collectors can be increased to 1 from 0.55 (maximum for collectors without the electric field) without affecting the fog harvesting efficiency, allowing for lower construction cost of the collectors. Addition of the electric field showed two distinctive promotional effects. First, increasing the aerodynamic efficiency and second, reducing the size of droplets sliding down the wires by disturbing the three-phase contact line and reducing the contact angle hysteresis and the pinning force. Energy analysis shows that this technique can be 100 times more energy efficient compared to the conventional atmospheric water generators.


Sign in / Sign up

Export Citation Format

Share Document