transport critical current density
Recently Published Documents


TOTAL DOCUMENTS

164
(FIVE YEARS 7)

H-INDEX

22
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5152
Author(s):  
Daniel Gajda ◽  
Andrzej J. Zaleski ◽  
Andrzej J. Morawski ◽  
Malgorzata Małecka ◽  
Konstantin Nenkov ◽  
...  

Annealing undoped MgB2 wires under high isostatic pressure (HIP) increases transport critical current density (Jtc) by 10% at 4.2 K in range magnetic fields from 4 T to 12 T and significantly increases Jtc by 25% in range magnetic fields from 2 T to 4 T and does not increase Jtc above 4 T at 20 K. Further research shows that a large amount of 10% SiC admixture and thermal treatment under a high isostatic pressure of 1 GPa significantly increases the Jtc by 40% at 4.2 K in magnetic fields above 6 T and reduces Jtc by one order at 20 K in MgB2 wires. Additionally, our research showed that heat treatment under high isostatic pressure is more evident in wires with smaller diameters, as it greatly increases the density of MgB2 material and the number of connections between grains compared to MgB2 wires with larger diameters, but only during the Mg solid-state reaction. In addition, our study indicates that smaller wire diameters and high isostatic pressure do not lead to a higher density of MgB2 material and more connections between grains during the liquid-state Mg reaction.


2021 ◽  
Vol 317 ◽  
pp. 125-130
Author(s):  
Wei Kong ◽  
Nurul Auni Khalid ◽  
Wani Nadhirah Titingan Nizam ◽  
Kim Yeow Tshai ◽  
Ing Kong ◽  
...  

High temperature superconductor Tl-1212 with nominal starting composition (Tl0.85Cr0.15)Sr2CaCu2O7-δ was prepared with high purity oxide powders using a solid state reaction method. Small amounts of nickel-zinc ferrite nanoparticles (Ni0.5Zn0.5Fe2O4) at compositions 0.01, 0.02, 0.05 and 0.10 wt. % were added into Tl-1212 superconductors. The effect of Ni0.5Zn0.5Fe2O4 nanoparticles’ addition on the critical temperature (Tc), transport critical current density (Jc), phase formation, and morphology was studied. The samples were characterized using electrical resistance measurement, transport critical current density measurement, powder X-ray diffraction method (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). Zero-resistance critical temperature (Tc-zero) was found to rise from 97 K to 99 K with increasing Ni0.5Zn0.5Fe2O4 nanoparticles concentration. The highest value recorded for transport critical current density (Jc) was 3,120 mA/cm2 at 77 K, which exhibited by sample with 0.02 wt. % of Ni0.5Zn0.5Fe2O4 nanoparticles. All samples showed a dominant Tl-1212 phase and exhibited tetragonal lattice structure in the P4/mmm space group. SEM micrographs showed close-packed microstructure with low porosity. EDX mapping showed that Ni0.5Zn0.5Fe2O4 nanoparticles were well distributed in the Tl-1212 samples. This study demonstrated that Ni0.5Zn0.5Fe2O4 nanoparticles have functioned as effective flux pinning centers to Tl-1212 superconductors and thus significantly enhanced its Jc.


2020 ◽  
Vol 33 (11) ◽  
pp. 3395-3399
Author(s):  
D. Gajda ◽  
A. J. Zaleski ◽  
A. Morawski ◽  
T. Cetner ◽  
M. Rindfleisch

Abstract This article presents the impact of MgB2 wire bending and diameter on transport critical current density and irreversible magnetic field of a resultant coil. Unreacted MgB2 wires 500 mm in length and 0.63 or 0.83 mm in diameter have been used in the fabrication of small diameter (14 mm) superconducting coils. The coils were subsequently annealed under isostatic pressure of 1 GPa for 15 min at 700 °C and 725 °C. Our results indicate that larger wire diameter, higher annealing temperature, and bending lead to slight reduction of critical current density and irreversible magnetic field in the coil.


2020 ◽  
Vol 307 ◽  
pp. 98-103
Author(s):  
Wei Kong ◽  
Christopher Jacob ◽  
Ing Kong ◽  
Cin Kong ◽  
Eng Hwa Yap ◽  
...  

The effects of Ni0.5Zn0.5Fe2O4 nanoparticle addition on the superconducting and transport properties of (Tl0.85Cr0.15)Sr2CaCu2O7 (Tl-1212) superconductor were investigated in this paper. The Tl-1212 samples were produced by mixing high purity oxide powders through a solid-state reaction method. Nano Ni0.5Zn0.5Fe2O4 particles with compositions of 0.001 wt.%, 0.003 wt.%, 0.005 wt.%, 0.01 wt.% and 0.02wt.% with average size of 60 nm were added into the Tl-1212 powders. The transition temperatures (Tc-zero and Tc-onset) were measured using a four-point probe method. The highest Tc-zero recorded was 97 K which was exhibited by the pure Tl-1212 sample. The transport critical current, Ic, of the Tl-1212 samples were found through the 1 µV/cm criterion with temperature ranging from 30 K to 77 K. The sample with a composition of 0.003 wt.% displayed the highest value of Jc at 77 K with a value ranging up to 1780 mA/cm2. The Tl-1212 samples were characterised using scanning electron microscopy (SEM), powder X-ray diffraction method (XRD), energy dispersive X-Ray analysis (EDX), electrical resistance measurements and transport critical current density measurements. The Jc of the Tl-1212 superconductor has been improved through the addition of Ni0.5Zn0.5Fe2O4 nanoparticles but adding an excessive amount has caused its Jc to degrade.


2019 ◽  
Vol 290 ◽  
pp. 227-232
Author(s):  
Wei Kong ◽  
Ing Kong ◽  
Nur Akasyah Jaafar ◽  
M. Aizat Kamarudin ◽  
Nurul Raihan Suib ◽  
...  

The effect of nanosized nickel ferrite (NiFe2O4) addition on (Tl0.85Cr0.15)Sr2CaCu2O7-δ superconductors has been investigated. (Tl0.85Cr0.15)Sr2CaCu2O7-δ high temperature superconductors was prepared via solid-state reaction method using high purity oxide powders. Nanosized NiFe2O4 was added to the compound at composition x = 0 - 0.003 wt.%. Samples were studied using scanning electron microscopy (SEM), X-ray diffraction method (XRD), electrical resistance versus temperature, transport critical current density Jc and AC susceptibility measurements. SEM micrographs showed close-packed microstructure with low porosity. XRD patterns showed a dominant phase of Tl-1212 with a minor phase of Tl-1201 for all samples. All of the samples displayed metallic normal state behavior before the onset transition temperature (Tc-onset) which was between 102 and 104 K. The transition temperature (Tcχ’) from AC susceptibility measurement also showed the similar results between 101 and 103 K. Tc-zero was slightly suppressed with the addition of nanosized NiFe2O4. The peak temperature Tp from the imaginary part of the susceptibility χ” was found between 77 - 91 K for all samples. The highest transport critical current density (Jc) at 77 K was shown by sample x = 0.001 wt.% at 2213 mAcm-2. Nanosized NiFe2O4 has significantly enhanced the Jc of (Tl0.85Cr0.15)Sr2CaCu2O7-δ superconductor.


2017 ◽  
Vol 268 ◽  
pp. 315-319 ◽  
Author(s):  
Wei Kong ◽  
Ing Kong ◽  
Mohd Mustafa Awang Kechik ◽  
Roslan Abd-Shukor

In this work, the effect of nano-sized SnO2 addition on the phase formation and electrical transport properties of (Tl0.85Cr0.15)Sr2CaCu2O7-δ (Tl-1212) superconductor was investigated. Thallium-based high temperature superconductor (HTS) with nominal starting composition (Tl0.85Cr0.15) Sr2CaCu2O7-δ was prepared using high purity oxide powders via solid state reaction method. Nano-sized SnO2 with 0.01 – 0.05 wt.% were added into Tl-1212 superconductors. The characteristic of the samples were determined by powder X-ray diffraction method (XRD), scanning electron microscopy (SEM), energy dispersive X-Ray analysis (EDX), electrical resistance measurements and transport critical current density measurements. Nano-sized SnO2 added (Tl0.85Cr0.15)Sr2CaCu2O7-δ showed Tc-zero between 93 and 95 K. All of the samples indicated a dominant phase of Tl-1212 with a minor phase of Tl-1201. The highest Jc (at 77 K) was shown by sample with 0.03 wt.% at 3260 mA/cm2. SnO2 has significantly enhanced the transport critical current density of Tl-1212 superconductor by acting as flux pinning centers. However, further addition of nano-sized SnO2 in Tl-1212 superconductor caused degradation in Jc. The SEM micrographs with energy dispersive X-Ray analysis (EDX) showed that SnO2 were well distributed in all the samples.


2017 ◽  
Vol 268 ◽  
pp. 320-324
Author(s):  
I.M.O. Dabaa ◽  
Roslan Abd-Shukor

The effect of nanosized Bi2O3 (150 nm) on the formation of the Tl2Ba2CaCu2O8 (Tl-2212) phase, transition temperature and transport critical current density has been studied. Samples with nominal starting composition Tl2Ba2CaCu2O8(Bi2O3)x (x = 0 to 0.5 wt. %) were prepared using the solid state reaction method. Most samples except x = 0.5 showed a mixed phase consisting of the Tl2Ba2CaCu2O8 and Tl2Ba2Ca2Cu3O10 (Tl-2223). The x = 0.5 sample showed a single Tl-2212 phase. However, the transition temperature, Tc of the x = 0.5 was very much suppressed (Tonset = 106 K, Tc zero 88 K). All samples showed random grain size and orientation, with partial melting and high porosity. The x = 0.1 mixed phase sample showed the highest transport critical current density of 285 mA/cm2 at liquid nitrogen temperature (78 K).


Sign in / Sign up

Export Citation Format

Share Document