Effect of Gravity on Titanium Carbide Foams by Self-propagation High-temperature Synthesis

1999 ◽  
Vol 14 (4) ◽  
pp. 1516-1523 ◽  
Author(s):  
Yasuhiro Tanabe ◽  
Takashi Sakamoto ◽  
Nobuko Okada ◽  
Takashi Akatsu ◽  
Eiichi Yasuda ◽  
...  

Titanium carbide foams are synthesized by a self-propagation high-temperature synthesis technique using carbon black, which generates gases during the synthesis. The synthesis is performed under terrestrial and microgravity conditions. The effects of gravity on the synthesis are evaluated in this study. The foaming is mainly caused by H2O and CO gases from the carbon black. The elongation of the products increases with decreasing environmental pressure and increasing amount of generated gases. Since the gas flows out along the direction of the combustion wave propagation, the products expand only along this direction. The propagation velocity of the combustion wave increases with increasing amount of generated gases and environmental pressure, which is due to the amount of molten Ti transporting into the reaction/preheat zone. Under higher environmental pressures, thermal convection of the environmental gases mainly affects the propagation velocity. However, at lower pressures, the behavior of the molten Ti has a great effect compared with the gases surrounding the specimens.

2020 ◽  
Vol 15 (4) ◽  
pp. 27-32
Author(s):  
Irina V. Milyukova ◽  
Marina P. Boronenko

The work is devoted to the technology for the reduction of molybdenum from oxides by the method of self-propagating high-temperature synthesis in the MoO3 AI system with the addition of aluminum. The experiment was carried out in two modes: in a reactor at different pressures without preliminary heating and in a furnace in air until the initiation of the SH-synthesis process. Samples of molybdenum metal were obtained in different synthesis modes. X-ray phase and X-ray spectral analysis showed that molybdenum is the main phase in the synthesized samples. The presence of slag oxide phases Al2O3 and MoO2 was detected.


2007 ◽  
Vol 336-338 ◽  
pp. 310-312
Author(s):  
Xiao Kui Liu ◽  
Wan Cheng Zhou ◽  
Fa Luo ◽  
Dong Mei Zhu

SiC-AlN solid solution powders were prepared from the mixtures of aluminum, silicon and carbon black in a nitrogen atmosphere with preheating self-propagating high temperature synthesis (SHS) method. The powders synthesized with different ratios of Al/Si were mixed with paraffin wax and the microwave permittivity of the mixtures was measured at the frequency of 8.2~12.4GHz. The results were contrasted with that of SiC powders synthesized by preheating SHS in argon and nitrogen atmosphere respectively. The ε′, ε″, and the tgδ (ε″/ε′) of the mixture of SiC prepared in a nitrogen atmosphere are highest, followed with those of the SiC-AlN solid solution powders and the SiC powders prepared in an argon atmosphere. Along with the increase of atomic ratio of Al/Si, the ε′, ε″, and tgδ of SiC-AlN solid solution decrease. We believe that, with the increase of AlN dissolved, the concentration of carriers and the effect of dielectric relaxation will decrease because of the two contrary dopants.


2000 ◽  
Vol 108 (1255) ◽  
pp. 290-297
Author(s):  
Yasuhiro TANABE ◽  
Nobuko OKADA ◽  
Akira MUKOHFUJIWARA ◽  
Takashi AKATSU ◽  
Eiichi YASUDA

2014 ◽  
Vol 55 (6) ◽  
pp. 606-612 ◽  
Author(s):  
A. R. Luts ◽  
A. P. Amosov ◽  
And. A. Ermoshkin ◽  
Ant. A. Ermoshkin ◽  
K. V. Nikitin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document