Anisotropic thermal expansion in yttrium silicate

2003 ◽  
Vol 18 (7) ◽  
pp. 1715-1722 ◽  
Author(s):  
Koichiro Fukuda ◽  
Hiroyuki Matsubara

In this study, crystals of Y2SiO5 were examined by high-temperature powder x-ray diffractometry to determine the changes in unit-cell dimensions with temperatures up to 1273 K for the X1 phase (the low-temperature phase, space group P121/c1) and 1473 K for the X2 phase (the high-temperature phase, space group I12/a1). The lattice deformations of both phases induced by thermal expansion were investigated by matrix algebra analysis to determine the directions and magnitudes of the principal distortions (λi, i = 1, 2, and 3). For the X1 phase, λ1 and λ2 invariably showed a positive thermal expansion. On the other hand, λ3 showed a negative thermal expansion below 1173 K; the maximum contraction of 0.10(4)% occurred at 685 K. The λ2 axis invariably coincides with the crystallographic b axis. The directions of λ1 and λ3, defined by the acute angle λ3 ^ c changed between 53(3)° (T = 394 K) and 45(1)° (T = 788 K). For the X2 phase, all of the principal distortions steadily increased with increasing temperature. The angle λ3 ^ c steadily decreased from 71(2)° to 62.1(1)° with increasing temperature. The mean linear thermal expansion coefficients were, when compared at the same temperatures, necessarily higher for the X1 phase than for the X2 phase. The lattice change of X1–RE2SiO5 (RE = Y and Yb–La), which was induced by the substitution of rare-earth (RE) ions, showed a striking resemblance with the lattice deformation of X1-Y2SiO5, which was caused by the thermal expansion. Because the lattice change of the former must be caused by the isotropic expansion of the RE sites, the anisotropic thermal expansion of the latter would be essentially attributable to the isotropic thermal expansion of the YO9 and YO7 polyhedron.

2015 ◽  
Vol 48 (2) ◽  
pp. 318-333 ◽  
Author(s):  
B. Orayech ◽  
A. Faik ◽  
G. A. López ◽  
O. Fabelo ◽  
J. M. Igartua

Na0.5K0.5NbO3has been synthesized by the conventional solid-state reaction process. The crystal structures and phase transitions, at low and high temperature, determined from the Rietveld refinements of X-ray and neutron powder diffraction data are reported. The structure evolution of Na0.5K0.5NbO3in the temperature range from 2 to 875 K shows the presence of three phase transitions. The first one, at ∼135 K, is discontinuous from the rhombohedralR3c(No. 161) space group to the room-temperature orthorhombicAmm2 (No. 38) space group; the second is discontinuous from the orthorhombic to the tetragonalP4mmspace group (No. 99) at ∼465 K, and the third is continuous from the tetragonal to the cubic Pm\overline{3}m space group (No. 221) at ∼700 K. The obtained phase-transition sequence isR3c→Amm2 →P4mm→Pm\overline{3}m. No previous studies at low temperature have been carried out on the material with composition Na0.5K0.5NbO3. In the course of the determination of the three experimentally found phases, a novel method of refinement is presented. This is a step forward in the use of the symmetry-adapted modes as degrees of freedom in the refinement process: the parameterization of a direction in the internal space of the, in this case, sole irreducible representation, GM4−, responsible for the symmetry breaking from the parent cubic space group to the polar distorted low-symmetry phases. Eventually, this procedure enables the calculation of the spontaneous polarization.


2001 ◽  
Vol 57 (6) ◽  
pp. 791-799 ◽  
Author(s):  
Menahem Kaftory ◽  
Mark Botoshansky ◽  
Moshe Kapon ◽  
Vitaly Shteiman

4,6-Dimethoxy-3-methyldihydrotriazine-2-one (1) undergoes a single-crystal to single-crystal reversible phase transformation at 319 K. The low-temperature phase crystallizes in monoclinic space group P21/n with two crystallographically independent molecules in the asymmetric unit. The high-temperature phase is obtained by heating a single crystal of the low-temperature phase. This phase is orthorhombic, space group Pnma, with the molecules occupying a crystallographic mirror plane. The enthalpy of the transformation is 1.34 kJ mol−1. The small energy difference between the two phases and the minimal atomic movement facilitate the single-crystal to single-crystal reversible phase transformation with no destruction of the crystal lattice. On further heating, the high-temperature phase undergoes methyl rearrangement in the solid state. 2,4,6-Trimethoxy-1,3,5-triazine (3), on the other hand, undergoes an irreversible phase transformation from single-crystal to polycrystalline material at 340 K with an enthalpy of 3.9 kJ mol−1; upon further heating it melts and methyl rearrangement takes place.


2017 ◽  
Vol 07 (04) ◽  
pp. 1750025 ◽  
Author(s):  
K. P. Chandra ◽  
A. R. Kulkarni ◽  
K. Prasad

Temperature dependent X-ray diffraction (XRD) and dielectric properties of perovskite Ba(Zr[Formula: see text]Ti[Formula: see text]O3 ceramic prepared using a standard solid-state reaction process is presented. Along with phase transitions at low temperature, a new phase transition at high temperature (873[Formula: see text]C at 20[Formula: see text]Hz), diffusive in character has been found where the lattice structure changes from monoclinic (space group: [Formula: see text] to hexagonal (space group: [Formula: see text]). This result places present ceramic in the list of potential candidate for intended high temperature applications. The AC conductivity data followed hopping type charge conduction and supports jump relaxation model. The experimental value of [Formula: see text][Formula: see text]pC/N was found. The dependence of polarization and strain on electric field at room temperature suggested that lead-free Ba(Zr[Formula: see text]Ti[Formula: see text]O3 is a promising material for electrostrictive applications.


1992 ◽  
Vol 47 (1-2) ◽  
pp. 160-170
Author(s):  
Dirk Groke ◽  
Shi-Qi Dou ◽  
Alarich Weiss

AbstractThe temperature dependence of 35Cl NQR frequencies and the phase transition behaviour of chloroacetanilides (N-[2,6-dichlorophenyl]-2-chloroacetamide, -2,2-dichloroacetamide, -2,2,2-trichloroacetamide) were investigated. The crystal structure determination of N-[2,6-dichlorophenyl]- 2-chloroacetamide leads to the following: a = 1893.8 pm, b = 1110.7 pm, c = 472.1 pm, space group P212121 = D24 with Z = 4 molecules per unit cell. The arrangement of the molecules and their geometry is comparable to the high temperature phase of the acetyl compound N-[2,6-dichlorophenyl]- acetamide. For N-[2,6-diclorophenyl]-2,2,2-trichloroacetamide it was found: a = 1016.6 pm, b = 1194.3 pm, c = 1006.7 pm, ß= 101.79°, space group P21/c = C52h, Z = 4. The structure is similar to the low temperature phase of N-[2,6-dichlorophenyl]-acetamide. Parallelism between the temperature dependence of the 35C1 NQR lines of the CCl3 group and the X-ray diffraction results concerning the different behaviour of the chlorine atoms was observed. The structures of the compounds show intermolecular hydrogen bonding of the N - H • • • O - C type. The phenyl group and the HNCO function are nearly planar. A bleaching out of several 35Cl NQR lines at a temperature far below the melting point of the substances was observed. The different types of chlorine atoms (aromatic, chloromethyl) can be distinguished by their temperature coefficients of the 35Cl NQR frequencies. All the resonances found show normal "Bayer" temperature behaviour. N-[2,6-dichlorophenyl]-2,2-diehloroacetamide shows several solid phases. One stable low temperature phase and an instable high temperature phase (at room temperature) were observed. The different phases were detected by means of 35Cl NQR spectroscopy and thermal analysis


2001 ◽  
Vol 16 (8) ◽  
pp. 2251-2255 ◽  
Author(s):  
J. W. Nowok ◽  
J. P. Kay ◽  
R. J. Kulas

The linear thermal-expansion coefficients of yttrium silicate Y2SiO5, [Y2(SiO4)O] were measured in the temperature range from 20 to 1400 °C using x-ray diffraction. The anomalous behavior of thermal expansion was observed above Tc = 850 °C and was attributed to the displacive phase transformation. The transformation was reversible and resulted from the local order °C the compositional disorder and local fluctuation in the elastic free energy constrained a secondary transformation related to the polymorphic twin transformation. This created an additional peak in x-ray diffraction patterns at 2 's intensity. The characteristic of phase transformation both on heating and on cooling of the sample was also investigated using the differential thermal analysis method. The thermogravimetric technique did not indicate on a change of weight at Tc.


2020 ◽  
Author(s):  
Zifan Zhao ◽  
Huimin Xiang ◽  
Heng Chen ◽  
Fu-zhi Dai ◽  
Xiaohui Wang ◽  
...  

Abstract The critical requirements for the environmental barrier coating (EBC) materials of silicon-based ceramic matrix composites (CMCs) including good tolerance to harsh environments, thermal expansion match with the interlayer mullite, good high-temperature phase stability and low thermal conductivity. Cuspidine-structured rare-earth aluminates RE4Al2O9 have been considered as candidates of EBCs for their superior mechanical and thermal properties, but the phase transition at high temperatures is a notable drawback of these materials. To suppress the phase transition and improve the phase stability, a novel cuspidine-structured rare-earth aluminate solid solution (Nd0.2Sm0.2Eu0.2Y0.2Yb0.2)4Al2O9 was designed and successfully synthesized inspired by entropy stabilization effect of high entropy ceramics. The as-synthesized (Nd0.2Sm0.2Eu0.2Y0.2Yb0.2)4Al2O9 exhibits close thermal expansion coefficient (6.96×10-6 /K at 300-1473 K) to that of mullite, good phase stability from 300 K to 1473 K, and low thermal conductivity (1.50 W·m-1·K-1 at room temperature). In addition, strong anisotropic thermal expansion has been observed compared to Y4Al2O9 and Yb4Al2O9. The mechanism for low thermal conductivity is attributed to the lattice distortion and mass difference of the constituent atoms while the anisotropic thermal expansion is due to the anisotropic chemical bonding enhanced by the large size rare earth cations.


1988 ◽  
Vol 43 (8) ◽  
pp. 1023-1028 ◽  
Author(s):  
Harald Gunsilius ◽  
Horst Borrmann ◽  
Arndt Simon ◽  
Werner Urland

Abstract3 different modifications of TbCl3 were synthesized. TbCl, (UCl3-type), probably in a metastable state, crystallizes in space group P63/m with a = 737.63(2) pm, c = 405.71(2) pm and Z - 2. TbCl3 (PuB3-type) crystallizes in space group Cmcm with a = 384.71(6) pm, b = 1177.37(7) pm. c = 851.77(4) pm and Z = 4. h-TbCl3, the high temperature phase being stable above 790 K. crystallizes in space group P42/mnm with a = 642.51(4) pm, c = 1177.14(18) pm and Z = 4.


1993 ◽  
Vol 8 (2) ◽  
pp. 109-117 ◽  
Author(s):  
Dhanesh Chandra ◽  
Cynthia S. Day ◽  
Charles S. Barrett

Plastic crystals, such as neopentylglycol, 2, 2-dimethyl-1,3-propanediol, that exhibit polymorphic behavior are emerging materials for thermal energy storage. The energy is stored isothermally in the γ phase, FCC, during solid-state phase transformations. This γ phase of NPG has been determined as an orientational disordered phase. The low temperature α phase structure, which is of great significance in the evaluation of lattice expansions and other parameters, was first determined in 1961. However, the reported unit cell dimensions and the intensities of the reflections led to erroneous indexing of the powder patterns in binary systems. The α phase structure is redetermined here as monoclinic, M= 104.15 amu, space group P21/n (an alternate setting of , space group No. 14), a = 5.979(1)Å, b= 10.876(2)Å, c=10.099(2)Å, β=99.78(1)°, V=647.2(2)Å3 at 20°(± 1)C, Dx= 1.069 g cm s−3 for Z=4. In this paper the redetermined structure of the α phase of NPG is presented in projections of the atomic positions, in tables, and in calculated powder pattern and these results are compared with those reported by others. The powder patterns obtained from the Bragg–Brentano diffractometer are compared with our calculated pattern from the single crystal data. The structural parameters of the high temperature phase of NPG as determined by a Guinier diffraction system are also reported.


Sign in / Sign up

Export Citation Format

Share Document