Creep characteristics of alumina, nickel aluminate spinel, zirconia composites

2008 ◽  
Vol 23 (2) ◽  
pp. 556-564 ◽  
Author(s):  
R. Peter Dillon ◽  
Dong-Kyu Kim ◽  
Joy E. Trujillo ◽  
Waltraud M. Kriven ◽  
Martha L. Mecartney

Fine grained, three-phase ceramic composites that exhibit favorable toughness, hardness, and high room-temperature strength were evaluated for high-temperature mechanical stability. A 50vol%Al2O3–25vol%NiAl2O4–25vol%3 mol%yttria-stabilized tetragonal zirconia polycrystal (3Y–TZP) and a 33vol%Al2O3–33vol%NiAl2O4–33vol%3Y-TZP composite were compression creep tested at temperatures between 1350 and 1450 °C under constant stresses of 20–45 MPa. The three-phase microstructure effectively limited grain growth (average d0 = 1.3 μm, average df = 1.6 μm after 65% true strain). True strain rates were 10−4 to 10−6 s−1 with stress exponents n = 1.7 to 1.8 and a grain-size exponent p = 1.3. A method for compensating for grain growth is presented using stress jump tests. The apparent activation energy for high-temperature deformation for 50vol%Al2O3–25vol%NiAl2O4–25vol%3Y–TZP was found to be 373 kJ/mol-K.

2014 ◽  
Vol 922 ◽  
pp. 807-812 ◽  
Author(s):  
Robert Werner ◽  
Emanuel Schwaighofer ◽  
Martin Schloffer ◽  
Helmut Clemens ◽  
Janny Lindemann ◽  
...  

In the present study the high-temperature deformation behavior of a caste and subsequently HIPed β-solidifying γ-TiAl-based alloy with a nominal composition of Ti-43.5Al-4Nb-1Mo-0.1B (in at. %), termed TNM alloy, is investigated. At room temperature this alloy consists of ordered γ-TiAl, α2-Ti3Al and βo-TiAl phases. By increasing the temperature, α2and βodisorder to α and β, respectively. In order to get a better understanding of dynamic recovery and recrystallization processes during thermomechanical processing, isothermal compression tests on TNM specimens are carried out on a Gleeble®3500 simulator. These tests are conducted at temperatures ranging from 1100 °C to 1250 °C (in the α/α2+β/βo+γ phase field region) applying strain rates in the range of 0.005 s-1to 0.5 s-1up to a true strain of 0.9. The evolution of microstructure along with the dynamically recrystallized grain size during hot deformation is examined by scanning electron microscopy (SEM). The flow softening behavior after reaching the peak stress in the true stress-true strain curve is attributed to dynamic recrystallization. By using the Zener-Hollomon parameter as a temperature-compensated strain rate the dependence of flow stress on temperature and strain rate is shown to follow a hyperbolic-sine Arrhenius-type relationship.


1990 ◽  
Vol 213 ◽  
Author(s):  
Donald S. Shih ◽  
Gary K. Scarr

ABSTRACTThe hot-workability of a two-phase (γ+α2) alloy, Ti-48A1-2Cr-2Nb, has been studied by conducting isothermal compression tests to 0.8 true strain over the temperature range of 975–1200°C at strain rates between 1×l0−1 and 3×10−3s−1. A deformation map showing temperature, strain rate, soundness of deformation, and isostress contours was constructed. Good workability is found from the low temperature/low strain rate regime to combinations of high temperature and either high or low strain rate. The upper-limit flow stress for good workability is between 450 and 500 MPa. Deformation induced softening occurs at all conditions. SEM and TEM examinations of the deformed specimens reveal that non-uniform deformation takes place at all strain rates, but cracking occurs mostly at high strain rates (e.g. 1×10−1s−1), especially combined with low temperatures. The cracking appears to progress primarily along γ/α2interfaces. It is thought that non-uniform deformation develops channels of shear bands, which in turn promote localized recrystallization, thus accommodating higher strains.


2004 ◽  
Vol 264-268 ◽  
pp. 813-816
Author(s):  
A. Morales-Rodríguez ◽  
M. Jiménez-Melendo ◽  
Arturo Domínguez-Rodríguez ◽  
P. Pinasco ◽  
E. Roncari ◽  
...  

1995 ◽  
Vol 10 (1) ◽  
pp. 113-118 ◽  
Author(s):  
S.E. Dougherty ◽  
T.G. Nieh ◽  
J. Wadsworth ◽  
Y. Akimune

The high-temperature deformation behavior of a SiC whisker-reinforced, yttria-stabilized, tetragonal zirconia polycrystalline composite containing 20 vol % SiC whiskers (SiC/Y-TZP) has been investigated. Tensile tests were performed in vacuum at temperatures from 1450 °C to 1650 °C and at strain rates from 10−3 to 10−5 s−1. The material exhibits useful high-temperature engineering properties (e.g., ∼100 MPa and 16% elongation at T = 1550 °C and at a strain rate of ∼10−4 s−1). The stress exponent was determined to be n ≍ 2. Scanning electron microscopy was used to characterize the grain size and morphology of the composites, both before and after deformation. The grain size in the composite was initially fine, but coarsened at the test temperatures; both dynamic and static grain growth were observed. The morphology of ceramic reinforcements appears to affect strongly the plastic deformation properties of Y-TZP. A comparison is made between the properties of monolithic Y-TZP, 20 wt. % Al2O3 particulate-reinforced Y-TZP (Al2O3/Y-TZP), and SiC/Y-TZP composites.


2007 ◽  
Vol 551-552 ◽  
pp. 373-378 ◽  
Author(s):  
X.J. Zhu ◽  
Ming Jen Tan ◽  
K.M. Liew

In this work, studies were carried out to investigate the superplasticity of a commercially pure (CP) titanium alloy during high temperature deformation. Uniaxial tensile tests were carried out at 600, 750 and 800°C with an initial strain rate from 10-1s-1 to 10-4s-1. It was found that the alloy do not show good superplasticity due fast grain growth at high temperature and cavity. The effects of temperature on the grain growth and cavity phenomena as well as the dynamic recrystallization of the alloy were studied and a ‘two-step-method’ was introduced to increase the superplasticity of the alloy.


Sign in / Sign up

Export Citation Format

Share Document