deformation properties
Recently Published Documents


TOTAL DOCUMENTS

1167
(FIVE YEARS 281)

H-INDEX

44
(FIVE YEARS 6)

2022 ◽  
Vol 55 (1) ◽  
Author(s):  
Ruth Birch ◽  
Thomas Benjamin Britton

Materials with an allotropic phase transformation can form microstructures where grains have orientation relationships determined by the transformation history. These microstructures influence the final material properties. In zirconium alloys, there is a solid-state body-centred cubic (b.c.c.) to hexagonal close-packed (h.c.p.) phase transformation, where the crystal orientations of the h.c.p. phase can be related to the parent b.c.c. structure via the Burgers orientation relationship (BOR). In the present work, a reconstruction code, developed for steels and which uses a Markov chain clustering algorithm to analyse electron backscatter diffraction maps, is adapted and applied to the h.c.p./b.c.c. BOR. This algorithm is released as open-source code (via github, as ParentBOR). The algorithm enables new post-processing of the original and reconstructed data sets to analyse the variants of the h.c.p. α phase that are present and understand shared crystal planes and shared lattice directions within each parent β grain; it is anticipated that this will assist in understanding the transformation-related deformation properties of the final microstructure. Finally, the ParentBOR code is compared with recently released reconstruction codes implemented in MTEX to reveal differences and similarities in how the microstructure is described.


2022 ◽  
Author(s):  
Ning Wei ◽  
Ai-Qiang Shi ◽  
Zhi-Hui Li ◽  
Bing-Xian Ou ◽  
Si-Han Zhao ◽  
...  

Abstract The plastic deformation properties of cylindrical pre-void Aluminum-Magnesium (Al-Mg) alloy under uniaxial tension are explored using molecular dynamics simulations with embedded atom method (EAM) potential. The factors of Mg content, void size, and temperature are considered. The results show that the void fraction decreases with increasing Mg in the plastic deformation, and it is almost independent of Mg content when Mg is beyond 5%. Both Mg contents and stacking faults around the void affect the void growth. These phenomena are explained by the dislocation density of the sample and stacking faults distribution around the void. The variation trends of yield stress caused by void size are in good agreement with Lubarda model. Moreover, temperature effects are explored, the yield stress and Young's modulus obviously decrease with temperature. Our results may enrich and facilitate the understanding of the plastic mechanism of Al-Mg with defects or other alloys.


2022 ◽  
pp. 136943322110736
Author(s):  
Shu-Yan Liu ◽  
Zhao-Yang Zhang ◽  
Xiao Xue ◽  
Qing-Zhou Wang ◽  
Cheng-Zhi Xiao

In this study, the load level, soil cover height, rise-span ratio, and arch foot constraint state were utilized to explore the mechanical properties of buried arch glass fiber reinforced plastics (GFRP) structures. Through the indoor scale-down test, the stress and deformation of arched GFRP structures under different load and soil cover height were investigated. Additionally, through the three-dimensional finite element method, the influence of the rise-span ratio and the constraint state of arch foot on the mechanical properties were obtained. The results indicate the new buried composite arch structure has excellent bearing capacity for the possible traffic load. Simultaneously, the semi-elliptical arch structure was believed to outperform the semi-circular arch structure when considering the external load. Specifically, increasing the soil cover height and reducing rise-span ratio were found to achieve the load-reduction effect.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 387
Author(s):  
Hasan Al-Rifaie ◽  
Nejc Novak ◽  
Matej Vesenjak ◽  
Zoran Ren ◽  
Wojciech Sumelka

Auxetic structures can be used as protective sacrificial solutions for impact protection with lightweight and excellent energy-dissipation characteristics. A recently published and patented shock-absorbing system, namely, Uniaxial Graded Auxetic Damper (UGAD), proved its efficiency through comprehensive analytical and computational analyses. However, the authors highlighted the necessity for experimental testing of this new damper. Hence, this paper aimed to fabricate the UGAD using a cost-effective method and determine its load–deformation properties and energy-absorption potential experimentally and computationally. The geometry of the UGAD, fabrication technique, experimental setup, and computational model are presented. A series of dog-bone samples were tested to determine the exact properties of aluminium alloy (AW-5754, T-111). A simplified (elastic, plastic with strain hardening) material model was proposed and validated for use in future computational simulations. Results showed that deformation pattern, progressive collapse, and force–displacement relationships of the manufactured UGAD are in excellent agreement with the computational predictions, thus validating the proposed computational and material models.


2022 ◽  
Vol 64 (2) ◽  
pp. 289
Author(s):  
Д.В. Новиков

Electron microscopy data are used to comparative analysis of the topological structure of the surface of two samples of cellulose triacetate (СTA) films. The samples were obtained from CTA solutions without use (sample №1) and with the use of a small sodium fluoride additive that lowers the viscosity of the solution (sample №2). It is shown that in sample №1, the nodes of the physical network of macromolecules are periodically alternating regions of local orientation order - microdomains of average size d~18 nm. In sample №2, due to repackaging of microdomains on the scale R >d, a uniformly disordered fractal cluster of the mesophase CTA is formed. The fractalization of the surface and the growth of structural anisotropy are consistent with the decrease in the viscosity of the solution and explain the change in the deformation properties of sample №2 compared to №1.


2022 ◽  
Vol 52 (1) ◽  
pp. 22-27
Author(s):  
P B Ermolinskiy ◽  
A E Lugovtsov ◽  
A N Semenov ◽  
A V Priezzhev

Abstract We consider the effect of a tightly focused laser beam with a wavelength of 1064 nm and a power from 10 to 160 mW on red blood cells during their optical trapping with optical tweezers. It is found that the shape of a red blood cell, which alters after optical trapping, ceases to change when the trapping duration is less than 5 min and the laser beam power is less than 60 mW. At a beam power above 80 mW, the red blood cell begins to fold at a trapping duration of about 1 min, and at powers above 100-150 mW, the red blood cell membrane ruptures in 1-3 min after optical trapping. It is also found that with repeated short-term capture of a red blood cell in an optical trap, the deformation properties of the membrane change: it becomes more rigid. The obtained results are important both for understanding the mechanisms of interaction of a laser beam with red blood cells and for optimising the technique of optical experiments, especially for measuring the deformation properties of a membrane using optical tweezers.


2021 ◽  
pp. 441-451
Author(s):  
Guoyang Liu ◽  
Junfang Xia ◽  
Kan Zheng ◽  
Jian Cheng ◽  
Liu Jiang ◽  
...  

In order to study the compressive creep properties and laws of paddy soil, multi-stress creep experiments of paddy soil with different moisture content were carried out. The results show that the creep deformation of paddy soil, subjected to compressive loads effect, develops stably and the paddy soil is not destructed under the yield strength when the stress is low. When the stress level is higher than the yield strength, the internal damage of paddy soil would be caused at the moment of loading. With the extension of creep time, the cracks would gradually expand, resulting in the soil to yield, break and disintegrate. According to the analysis of the deformation properties of paddy soil under compression and the change trend of creep curve, the nonlinear viscoelastic-plastic model was composed of the nonlinear viscoplastic model and Burgers model in series. The creep test curve was introduced into the model for fitting, and the coefficient of determination reached more than 0.96. Based on the model, the strain composition, strain proportion, and strain rate of paddy soil were studied. Finally, the nonlinear model was compared with Burgers model by verification test. The fitting accuracy of the nonlinear model was better than Burgers model, and the coefficient of determination and relative error were 0.997 and 0.437%, respectively, which proved the rationality and correctness of the nonlinear viscoelastic-plastic model. This study can provide a theoretical basis for the optimization of tillage machinery structure and the simulation analysis of soil tillage and compaction.


2021 ◽  
Vol 6 (1(62)) ◽  
pp. 36-42
Author(s):  
Oleksandr Kovalchuk ◽  
Viktoriia Zozulynets

The object of the research is the process of directed structure formation in the body of alkaline concrete, made using a reactive aggregate, in this case, basalt, and the process of deformation development in such concrete. The problem with using reactive aggregates is that they cause alkaline corrosion. It manifests itself in the form of cracks and layers of gel-like substances that form at the point of contact of the aggregate with the cement stone. During the research, methods of physical and chemical analysis were used (X-ray phase, differential thermal and thermogravimetric analyzes, electron microscopy, infrared spectroscopy, microprobe analysis). And also methods of mathematical planning of experiments have been used for the dependence of the physical and technical properties of cements and the directions of their structure formation. Also, the research has been carried out based on the analysis of world achievements in solving the problem of alkaline corrosion of concrete. The possibility of joint operation of the matrix of alkaline cements and active aggregates, represented by basalt, has been determined. The component composition of alkaline cement has been optimized and the need to increase the amount of the alkaline component in the system for the normal course of structure formation processes has been proved. The study of the influence of technical factors and conditions of hardening on the development of processes of structure formation of the investigated compositions has been carried out. The deformation properties of fine-grained concrete based on slag-alkaline cement and basalt aggregate have been investigated. It is shown that the expansion deformations of the samples, which accompany the process of alkaline corrosion of the aggregate in concrete, are directly related to the component composition and hardening conditions of the material. The obtained research results confirm the possibility of using active aggregates for the manufacture of building materials, in particular, based on alkaline cements. But for the safe course of the processes of structure formation, the component composition of the system has to be adjusted by introducing an active mineral additive and an additional alkaline component. The use of hydrophobizing additives makes it possible to increase the strength of the material even when operating under normal heat and humidity conditions.


Author(s):  
Ali Fouad ◽  
Rayya Hassan ◽  
Abdulrahman Mahmood

The importance of specifying proper aggregate grading for achieving satisfactory performance in pavement applications has long been recognized. To improve the specifications for superior performance, there is a need to understand how differences in aggregate gradations within the acceptable limits may affect unbound aggregate base behavior. The effects of gradation on strength, modulus, and deformation characteristics of high-quality crushed rock base materials are described here. Two crushed rock types commonly used in constructing heavy-duty granular base layers in the State of Victoria, Australia, with three different gradations each were used in this study. The gradations used represent the lower, medium, and upper gradation limits for heavy-duty base materials specified by the State of Victoria’s road agency (VicRoads). Modified compaction tests were conducted first to determine the moisture-density relationship of all mixes. Further, California bearing ratio (CBR), unconfined compressive strength (UCS), and repeated load triaxial (RLT) tests were then performed to study the effects of different gradations on strength, resilient modulus (MR), and deformation resistance. Further, permanent deformation and MR results were modeled using two popular models for each to explain the effect of gradation on the mixtures’ characteristics. The results indicate that the gradation that provides the best characteristics varies depending on the type of material used. For the materials tested here, coarse and medium gradations provide the best mixture characteristics in relation to CBR, MR, and permanent deformation. Fine gradation mixtures of these materials have lower values of these measures but are still considered acceptable considering relevant specification for the intended application.


Sign in / Sign up

Export Citation Format

Share Document