Conjugated Polymer:TiO2 Nanocomposite Solar Cells Based on P3HT Nanoparticles

2011 ◽  
Vol 1312 ◽  
Author(s):  
B. Harihara Venkatraman ◽  
Akshay Kokil ◽  
Soumitra Satapathi ◽  
Jayant Kumar ◽  
Dhandapani Venkataraman*

ABSTRACTThere is widespread interest in developing efficient solar cells derived from conjugated polymers and TiO2. The conjugated polymer can act as a light harvesting dye as well as a hole transport material, and can potentially replace both the ruthenium dye and the I3-/I- couple in the DSSCs. Herein, we report a novel and facile approach of using conjugated polymer nanoparticles to make conjugated polymer:TiO2 nanocomposite based solar cell. Nanoparticles from poly(3-hexylthiophene) (P3HT) were made using mini-emulsion technique. In this work we report on incorporation of these P3HT nanoparticles into nanoporous titania. Device characteristics made using P3HT nanoparticle sensitized solar cells were measured. These devices showed a short-circuit current density (Jsc) of 0.207 mA/cm2, open-circuit voltage (Voc) of 0.62 V and 0.07% (η) efficiency.

2015 ◽  
Vol 2015 ◽  
pp. 1-4
Author(s):  
Xiaojun Zhu ◽  
Xiaoping Zou ◽  
Hongquan Zhou

We use the successive ionic layer adsorption and reaction (SILAR) method for the preparation of quantum dot sensitized solar cells, to improve the performance of solar cells by doping quantum dots. We tested the UV-Vis absorption spectrum of undoped CdS QDSCs and Cu doped CdS QDSCs with different doping ratios. The doping ratios of copper were 1 : 100, 1 : 500, and 1 : 1000, respectively. The experimental results show that, under the same SILAR cycle number, Cu doped CdS quantum dot sensitized solar cells have higher open circuit voltage, short circuit current density photoelectric conversion efficiency than undoped CdS quantum dots sensitized solar cells. Refinement of Cu doping ratio are 1 : 10, 1 : 100, 1 : 200, 1 : 500, and 1 : 1000. When the proportion of Cu and CdS is 1 : 10, all the parameters of the QDSCs reach the minimum value, and, with the decrease of the proportion, the short circuit current density, open circuit voltage, and the photoelectric conversion efficiency are all increased. When proportion is 1 : 500, all parameters reach the maximum values. While with further reduction of the doping ratio of Cu, the parameters of QDSCs have a decline tendency. The results showed that, in a certain range, the lower the doping ratio of Cu, the better the performance of quantum dot sensitized solar cell.


Clean Energy ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 433-440
Author(s):  
Sri Wuryanti

Abstract In this study, analysis was performed of the macro characterization of solar cells with chlorophyll dye from Syzygium paniculatum, using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis. Solar cells based on titanium dioxide (TiO2) nanomaterial and chlorophyll dye from S. paniculatum can increase efficiency due to flavonoids and batulinic acid content. Photoanode TiO2 is one of the essential factors determining the photovoltaic properties of dye-sensitized solar cells (DSSCs) and shade, which broadens the absorption spectrum. Furthermore, the method used in this research involved varying the colour of the S. paniculatum leaves, namely red (SP-Red), green (SP-Green) and a red–green mix (SP-Mix). From a macro analysis, SEM observations resulted in agglomerated and aggregated TiO2-polyethylene glycol (PEG)-dye layers with irregular shapes. EDX observation resulted in a peak in Ti at 5 keV and all constituents were detected with an O:Ti ratio of 3.47:1 for FTO-TiO2/PEG using SP-Green. Measurement of voltage-current (IV) using a digital multimeter indicated that the best occurred in the DSSC with SP-Green, resulting in a short-circuit current density (Isc) of 0.0047 mA/cm2, an open-circuit voltage (Voc) of 0.432 V, a charging factor (FF) of 0.749 and an efficiency (η) of 3.724%.


RSC Advances ◽  
2014 ◽  
Vol 4 (80) ◽  
pp. 42252-42259 ◽  
Author(s):  
Shengbo Zhu ◽  
Zhongwei An ◽  
Xinbing Chen ◽  
Pei Chen ◽  
Qianfeng Liu

The modification of the π-linker of cyclic thiourea functionalized dyes has a significant effect on the short-circuit current density and open-circuit voltage of dye-sensitized solar cells.


2018 ◽  
Vol 9 ◽  
pp. 3069-3078 ◽  
Author(s):  
Mariia Karpacheva ◽  
Catherine E Housecroft ◽  
Edwin C Constable

We demonstrate that the performances of dye-sensitized solar cells (DSCs) sensitized with a previously reported N-heterocyclic carbene iron(II) dye in the presence of chenodeoxycholic acid co-adsorbant, can be considerably improved by altering the composition of the electrolyte while retaining an I−/I3 − redox shuttle. Critical factors are the solvent, presence of ionic liquid, and the use of the additives 1-methylbenzimidazole (MBI) and 4-tert-butylpyridine (TBP). For the electrolyte solvent, 3-methoxypropionitrile (MPN) is preferable to acetonitrile, leading to a higher short-circuit current density (J SC) with little change in the open-circuit voltage (V OC). For electrolytes containing MPN, an ionic liquid and MBI (0.5 M), DSC performance depended on the ionic liquid with 1-ethyl-3-methylimidazolium hexafluoridophosphate (EMIMPF) > 1,2-dimethyl-3-propylimidazolium iodide (DMPII) > 1-butyl-3-methylimidazolium iodide (BMII) ≈ 1-butyl-3-methylimidazolium hexafluoridophosphate (BMIMPF). Omitting the MBI leads to a significant improvement in J SC when the ionic liquid is DMPII, BMII or BMIMPF, but with EMIMPF the removal of the MBI additive results in a dramatic decrease in V OC (542 to 42 mV). For electrolytes containing MPN and DMPII, the effects of altering the MBI concentration have also been investigated. Although the addition of TBP improves V OC, it causes significant decreases in J SC. The best performing DSCs with the NHC-iron(II) dye employ an I−/I3 −-based electrolyte with MPN as solvent, DMPII ionic liquid (0.6 M) with no or 0.01 M MBI; values of J SC = 2.31 to 2.78 mA cm−2, V OC = 292 to 374 mV have been achieved giving η in the range of 0.47 to 0.57% which represents 7.8 to 9.3% relative to an N719 reference DSC set at 100%. Electrochemical impedance spectroscopy has been used to understand the role of the MBI additive in the electrolytes.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Zhen Zhan ◽  
Jing Cao ◽  
Weiguang Xie ◽  
Lintao Hou ◽  
Qin Ye ◽  
...  

Vanadium pentoxideV2O5was inserted between the donor layer and the anode as a hole-extracting nanolayer. Compared with devices without a hole-extracting layer, short-circuit current density (JSC), open-circuit voltage (VOC), fill factor (FF), and power conversion efficiency (PCE) of rubrene/C70-based heterojunction solar cells with 3 nm V2O5nanolayer are enhanced by 99%, 73%, 20%, and 310%, respectively. We found that V2O5interlayer can effectively suppress the contact resistance and increase the hole transport capability. The dependence of the device performance on V2O5layer thickness as well as fill factor on exciton dissociation and charge transport was also investigated in detail.


2020 ◽  
Vol 13 (06) ◽  
pp. 2050028
Author(s):  
Tianyu Guo ◽  
Hui Zhang ◽  
Guifeng Chen ◽  
Boling Long ◽  
Luxiao Xie ◽  
...  

I–III–VI chalcopyrite copper indium selenium is one of therepresentatives of the light absorbing layer material, and is often used for a thin-film solar cell. With the development of nano-technology, CuInSe2 quantum dots (CISe QDs) which have intermediate belt and excitation effect characteristics are applied to the solar cells as an alternative of Cd- or S-based QDs. Most conventional methods for the synthesis of CISe QDs using solution involve the dangerous and environmentally unfriendly Oleylamine or phosphine coordination compounds. In this work, CISe QDs were synthesized by a green, safe and low-temperature method in triethylene glycol. Through controlling the growth temperature and time, the diameter can be adjusted from 3[Formula: see text]nm to 10[Formula: see text]nm. The samples exhibit quantum confinement effect, and have a controllable optical band gap. QDs were deposited on the surface of ZnO nanorods to obtain a photoanode, which were fabricated into quantum dot-sensitized solar cells. The device exhibits size-dependent performance. And the open circuit voltage shows a fluctuation up to 0.26[Formula: see text]V. When the size is 4[Formula: see text]nm, the short circuit current density is the largest (15[Formula: see text]mA/cm2).


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4268
Author(s):  
Jessica de Wild ◽  
Gizem Birant ◽  
Guy Brammertz ◽  
Marc Meuris ◽  
Jef Poortmans ◽  
...  

Ultrathin Cu(In,Ga)Se2 (CIGS) absorber layers of 550 nm were grown on Ag/AlOx stacks. The addition of the stack resulted in solar cells with improved fill factor, open circuit voltage and short circuit current density. The efficiency was increased from 7% to almost 12%. Photoluminescence (PL) and time resolved PL were improved, which was attributed to the passivating properties of AlOx. A current increase of almost 2 mA/cm2 was measured, due to increased light scattering and surface roughness. With time of flight—secondary ion mass spectroscopy, the elemental profiles were measured. It was found that the Ag is incorporated through the whole CIGS layer. Secondary electron microscopic images of the Mo back revealed residuals of the Ag/AlOx stack, which was confirmed by energy dispersive X-ray spectroscopy measurements. It is assumed to induce the increased surface roughness and scattering properties. At the front, large stains are visible for the cells with the Ag/AlOx back contact. An ammonia sulfide etching step was therefore applied on the bare absorber improving the efficiency further to 11.7%. It shows the potential of utilizing an Ag/AlOx stack at the back to improve both electrical and optical properties of ultrathin CIGS solar cells.


2017 ◽  
Vol 80 (1) ◽  
Author(s):  
Zainal Arifin ◽  
Sudjito Soeparman ◽  
Denny Widhiyanuriyawan ◽  
Suyitno Suyitno ◽  
Argatya Tara Setyaji

Natural dyes have attracted much researcher’s attention due to their low-cost production, simple synthesis processes and high natural abundance. However the dye-sensitized solar cells (DSSCs) based natural dyes have higher tendency to degradation. This article reports on the enhancement of performance and stability of dye-sensitized solar cells (DSSCs) using natural dyes. The natural dyes were extracted from papaya leaves by ethanol solvent at a temperature of 50 °C. Then the extracted dyes were isolated and modified into Mg-chlorophyll using column chromatography. Mg-chlorophyll was then synthesized into Fe-chlorophyll to improve stability. The natural dyes were characterized using ultraviolet-visible spectrometry, Fourier transform infrared spectroscopy, and cyclic voltammetry. The performance of DSSCs was tested using a solar simulator. The results showed the open-circuit voltage, the short-circuit current density, and the efficiency of the extracted papaya leaves-based DSSCs to be 325 mV, 0.36 mA/cm2, and 0.07%, respectively. Furthermore, the DSSCs with purified chlorophyll provide high open-circuit voltage of 425 mV and short-circuit current density of 0.45 mA/cm2. The use of Fe-chlorophyll for sensitizing the DSSCs increases the efficiency up to 2.5 times and the stability up to two times. The DSSCs with Fe-chlorophyll dyes provide open-circuit voltage, short-circuit current density, and efficiency of 500 mV, 0.62 mA/cm2, and 0.16%, respectively. Further studies to improve the current density and stability of natural dye-based DSSCs along with an improvement in the anchor between dyes and semiconducting layers are required.


Author(s):  
Nur Shakina Mohd Shariff ◽  
Puteri Sarah Mohamad Saad ◽  
Mohamad Rusop Mahmood

There has been an increasing interest towards organic solar cells after the discovery of conjugated polymer and bulk-heterojunction concept. Eventhough organic solar cells are less expensive than inorganic solar cells but the power conversion energy is still considered low. The main objective of this research is to investigate the effect of the P3HT’s thickness and concentration towards the efficiency of the P3HT:Graphene solar cells. A simulation software that is specialize for photovoltaic called SCAPS is used in this research to simulate the effect on the solar cells. The solar cell’s structure will be drawn inside the simulation and the parameters for each layers is inserted. The result such as the open circuit voltage (Voc), short circuit current density (Jsc), fill factor (FF), efficiency (η), capacitance-voltage (C-V) and capacitance-frequency (C-f) characteristic will be calculated by the software and all the results will be put into one graph.


Sign in / Sign up

Export Citation Format

Share Document